FLUORESCENCIA IR DEL MODO $2v_5$ DEL CDCl₃ EXCITADO EN EL MODO v_4 MEDIANTE UN LASER DE CO, TEA

M. Vazquez, M.L. Azcárate*, E.J. Quel,

Centro de Investigaciones en Láser y Aplicaciones, Centro Investigaciones Técnicas de las Fuerzas Armadas y CONICET, Zufriategui 4380, 1603 V illa Martelli, Buenos Aires.

C.Rinaldi, J.C.Ferrero.

Departamento de Fisioquímica, Facultad de Ciencias Químicas, Suc.16, Universidad Nacional de Córdoba, C.C.61, 5000 Córdoba.

Se usó un láser de CO_2 TEA construído en el laboratorio, sintonizado en la línea 1 OP(48), 10,91m, para excitar el modo v_4 del $CDCl_3$ (914 cm⁻¹). Mediante un filtro gaseoso se aisló la señal de fluorescencia IR emitida por el modo $2v_5$ del $CDCl_3$ excitado. El análisis de la variación temporal de dicha señal mediante un método de regresión no lineal permitió determinar las constantes de relajación vibracional.

Se estudió la dependencia de la relajación V-T de la presión de CDCl₃ para una dada fluencia de láser. Se determinó también la dependencia de dicha relajación de la fluencia del láser para una dada presión del CDCl₃. Se estudió también la dependencia de la fluencia del láser de la desexcitación del CDCl₃ en presencia de gases no reactivos.

INTRODUCCION

Mediante la técnica de fluorescencia IR^1 se determinaron tiempos de relajación V-V del modo $2\upsilon_5$ del CDCl₃ excitado vibracionalmente en el modo υ_4 con un láser de CO_2 TEA, en función de la presión, de la fluencia y de la presión de Ar agregado.

PARTE EXPERIMETAL

El dispositivo experimental se muestra en la Fig. 1. Se usó un láser de CO₂ TEA, construído en el laboratorio, sintonizado en la línea 1OP (48), (10,91 µm), y colimado mediante un sistema de espejos y lentes a un área de 0,2 cm², para excitar el modo v₄ del CDCl₃ (914 cm⁻¹). La fluorescencia IR emitida por el gas, se enfocó sobre un detector de TeCdHg Judson Infrared, colocado perpendicularmente al haz del láser con una lente de CeNa de 2 cm de distancia focal. Se colocó una celda de 5 cm de largo sellada con ventanas de CeNa conteniendo una mezcla de 400 Torr de fluoruro de vinilo, 280 Torr de C₂F₄ y 100 Torr de Freon 11, entre la lente y el detector a fin de dejar pasar la radiación de $\lambda = 1492$ cm⁻¹ correspondiente al modo 2v₅ del CDCl₃. La señal detectada se amplificó y filtró con un amplificador Tektronix AM502, se digitalizó con un digitalizador de transitorios Biomation 8100 y se promedió con un microcomputadora Apple II. Las señales promediadas fueron luego transferidas a una microcomputadora IBM PC AT donde se analizaron mediante un programa de regresión no lineal que las ajustó a una suma de funciones exponenciales. La energía del haz del láser se midió con un medidor GENTEC ED500 conectado a un osciloscopio Tektronix 7633.

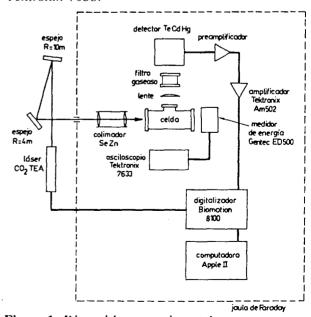


Figura 1: Dispositivo experimental.

^{*} Investigador CONICET

RESULTADOS

La Fig. 2 muestra que, para una fluencia de 2,5 J/cm², la velocidad de relajación V-V del modo 2v₅ aumenta linealmente con la presión de CDCI₃ hasta una presión de 5 Torr, a partir de la cual

permanece constante.

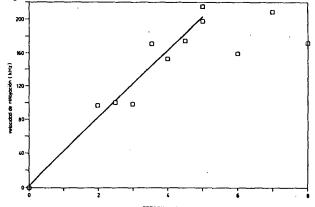


Figura 2: Velocidad de relajación del modo $2v_s$ del CDCI₃ en función de la presión del mismo para una fluencia del láser de 2,5 J/cm².

Resultados análogos se obtuvieron también para otras fluencias del láser, observándose que, al aumentar la fluencia disminuye la presión a la cual cambia el comportamiento de la relajación.

La Fig. 3 muestra la variación de la velocidad de relajación V-V del modo $2v_5$ en función de la presión de Ar, a una presión fija de CDCl₃ y dos fluencias del láser. El comportamiento es análogo al obtenido para el CDCl₃ puro.

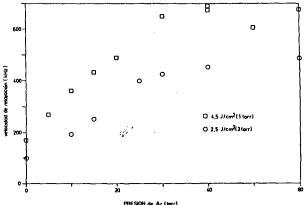


Figura 3: Vetocidad de relajación del modo $2v_5$ del CDCI₃ en función de la presión de Ar a una presión fija de CDCI₃ para fluencias del láser de 2,5 J/cm².

La Fig.4 muestra la variación de la velocidad de relajación V-V del modo $2v_5$ con la fluencia del láser para una presión de 4 Torr de CDCl₃.

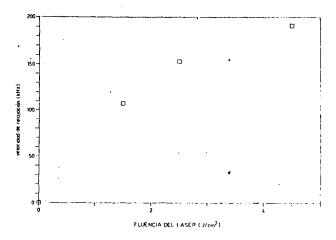


Figura 4: Velocidad de relajación del modo $2v_5$ del CDCI₃ en función de la fluencia del láser para una presión de 4 Torr de CDCI₃.

CONCLUSIONES

El cambio de pendiente en las curvas de la velocidad de relajación vs. presión de $CDCI_3$ y de Ar indicarían una variación del canal de relajación del modo $2\upsilon_5$ ^[2,3]. Del ajuste por cuadrados mínimos del aumento lineal de estos resultados hasta el punto de inflexión se obtienen los valores para las velocidades de relajación dados en la Tabla 1.

FLUENCIA Yem³	PRESION DE CDCI, Torr	PRESION DE Ar Torr	VELOCIDAD DE RELA- JACION Torr' ¹
2.5	0 - 5	0	40.1 ± 305
4.5	0 - 1	0	169.8 ± 19.0
2.5	3	0 - 30	11.5 ± 0.7
4.5	1	0 - 30	15.6 ± 0.6

Tabla 1: La velocidad de relajación del modo 205 aumenta al aumentar la fluencia del láser para una presión fija de CDCl₃.

REFERENCIAS

- E. Weitz, G.Flynn. "Photoselective Chemistry. Part 2", editado por J.Jortner, R.D.Levine, S.A. Rice, John Wiley & Sons, New York, 185, (1981).
- 2. V.A. Apkarian, E. Weitz, J. Chem. Phys. 71(11), 4349, (1979).
- 3. M.Moser, V.A. Apkarian, E. Weitz, J.Chem.-Phys. 74 (1), 342, (1981).