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It is proved that it is possible to obtain continuum deterministic evolution equations from a

set of discrete and stochastics rules after an average over realizations on the dynamical variables.

Examples are given.
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Se demuestra que es posible obtener las ecuaciones de evolución deterministas continuas a partir

de un conjunto de reglas de evolución discretas y estocásticas después de realizar un promedio

sobre realizaciones de las variables dinámicas. Se dan ejemplos de aplicación.
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I. INTRODUCTION

Deterministic evolution equations that evolve Marko-
vianly as well as non-Markovianly was the matter of
investigations over decades and an illustrative list,
including both type of equations, can be found in the
works given in [1-22]. Discrete stochastic evolution equa-
tions were initially studied in [23], where three classes
of evolution equations with weights and dynamical vari-
ables that are real numbers were studied. Subsequently,
the extension to weights and dynamical variables that
are complex numbers were studied in [24]. Additionally,
non-Markovian discrete evolution equations [25], mix
of Markovian and non-Markovian discrete evolution
equations [26] and the extension to dynamical variables
that are components of tensors [27], were subsequently
studied. Deterministic discrete evolution equations were
extensively studied and initiated by T. Regge [28] and
more recently efforts in this direction can be found in [29].

In this paper, it will be extended the previous results
to the most general version of the theorem that allows
to obtain continuum deterministic evolution equations
from a set of discrete stochastic evolution equations.
The dynamical variables considered are, as in [27],
tensors of any rank that can be in general complex
numbers and the object of study are functions of discrete
stochastic evolution equations like the Lagrangian and
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consequently perhaps the widest variety of problems can
be studied with the present approach. This is the fifth
extension of a theorem that allow to obtain the Euler
equation for the Lagrangian and constitute a version
that include the other four companion papers [24-27] as
special cases.

The paper is organized as follows. In Section 2 an in-
troduction of the evolution rules corresponding to models
with an updating of the dynamical variables that depends
on the values of functions of the dynamical variables at
an arbitrary number of previous time steps and with sub-
sets that are of different type is considered. In Section 3
a theorem allowing to connect two sets of stochastic evo-
lution equations with another two sets that contain de-
terministic weights is proved. This connection is proved
for the case of non-Markovian discrete stochastic evo-
lution equations for sets of different type of dynamical
variables. The Markovian case can be obtained as a spe-
cial case with updating that depends only on the first
previous time step. In Section 4 the general procedure
will be applied to obtain the deterministic differential
equation for two sets of equations. In the first set, stud-
ied in subsection 4.1, the dynamical variables with rules
that are functions of the Hamiltonian and in the second
set, studied in subsection 4.2, the derivation of the Euler
equations for the Lagrangian is considered. In section 5
a discussion and the conclusions will be considered.

Recibido: 01/11/12 – Aceptado: 19/09/13

ANALES AFA Vol. 24 N.2 (119-126) VILLA CARLOS PAZ 2012 119 



II. STOCHASTIC EVOLUTION UPDATING
FOR A SET OF FUNCTIONS OF COMPLEX

DYNAMICAL VARIABLES THAT ARE
COMPONENTS OF TENSORS: BASIC

DEFINITIONS

A four-dimensional lattice Λ consisting of a set of
points {x}, with periodic boundary conditions in an in-
terval [−L0i/2,+L0i/2] for i = 1, ..., 4 (L0i being finite or
infinite) will be considered and a set of complex dynami-

cal variables {q
(r0)r1...rαs0

(s0)s1...sβs0

(t,x)} will be used for describ-

ing the value of each dynamical variable of type s0 in a

realization r0 that are components of a tensor αs0 time
contravariant and βs0 times covariant of order αs0 + βs0

at coordinate x = x1, x2, x3, x4 and at evolution parame-
ter t. The separation between sites or lattice constant is
a1, a2, a3, a4 and the separation between two successive
updates is a0. The length of the lattice corresponding to
each coordinate is Li = ai(2L0i + 1) and the number of
lattice sites is M = (2L01+1)(2L02+1)(2L03+1)(2L04+
1). The evolution equation for a set of functions of dy-
namical variable can be expressed in the following general
form

F
(
{q

(r0)r1...rαs0

(s0)s1...sβs0

(t+ a0,x)}
)

= F
(
{q

(r0)r1...rαs0

(s0)s1...sβs0

(t,x)}
)
+ G(r0)

(s0)
(t+ a0, t, ..., t− lka0, X,X0, ..., Xl0k , Xj , Xξ),

∀ s0 ∈ {1, ..., S}, t ≥ 0,x ∈ Λ, (1)

where G denote the set of rules that define the updat-
ing corresponding to a given model or approach and S
is the number of different type of variables. For exam-
ple in the Hamiltonian and Lagrangian approach S = 2:
the generalized coordinates (one type of variables, say
(s0 = 1)) and momenta or velocities (the other type
(s0 = 2)), respectively, as shown in the examples in
section 4 below. Also, X, X0,...,Xl0k denote the set

of complex dynamical variables {q(r0)r1...rαs0

(s0)s1...sβs0
(t+ a0,x)},

{q(r0)r1...rαs0

(s0)s1...sβs0
(t,x)},..,{q(r0)r1...rαs0

(s0)s1...sβs0
(t − l0ka0,x)}, respec-

tively. The set of both discrete and continuous stochastic
variables that confer stochasticity to the evolution equa-
tions are Xj = {j} and Xξ = {ξ}, respectively. Note

that both, j = j(r0)(t) and ξ = ξ(r0)(t), depend on the
particular realization r0 and on the evolution parameter
t. Below, usually the dependence on t is neglected and
in j also the dependence on r0, in order to save printing.
The sets of dynamical variables depends on the partic-
ular realization r0, the time t + a0, and previous time
t, ..., t − l0ka0. The number of previous time is k + 2
and the set is {l0α} = {−1, 0, ..., k}, for any −1 ≥ α ≥ k.
The stochastic variables are chosen in such a way that all
of them are statistically independent and a factorization
of each product that contain stochastic variables is then
possible. A particular case of Eq,(1) is the evolution of
a set of dynamical variables, as those given in previous
companion papers, with a general expression of the form

q
(r0)r1...rαs0

(s0)s1...sβs0

(t+ a0,x) = q
(r0)r1...rαs0

(s0)s1...sβs0

(t,x) +G
(r0)
(s0)

(t, ..., t− lka0, X0, ..., Xl0k , Xj , Xξ),

∀ s0 ∈ {1, ..., S}, t ≥ 0,x ∈ Λ, (2)

where G is a set of rules that define the evolution of a
given model.
Let us assume, for the sake of simplicity, that the set

of S equations is separated in subsets containing S1 and

S2 equations such that S = S1 + S2. Moreover, let us
assume that the set of updating rules (also for the sake
of simplicity) are of the following particular form

G =
∑

{s01,l1}

w
(r0)
s01,l1

F
(
{q(r0)rαs01

(s01)sβs01
(t− l01a0,x11 +∆x11) + lqs0 ,s1aqs0}

)
∀ s01 ∈ {1, 2}, t ≥ 0, x1, ..., x4 ∈ Λ, (3)

where the short hand notation rαs0 = r1...rαs0
, sβs0 =

s1...sβs0
for s0 = 1, 2 and x11 +∆x11 = x1 + l11a1, x2 +

l21a2, x3 + l31a3 + l41a4 was used. Even when at first
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glance G seems to be some particular case, is enough gen-
eral to include the evolution equations in the Hamiltonian
and Lagrangian approach, which are the starting point
in field theory, and further extensions are more or less
straightforward. Note that also an additional discretiza-
tion of the dynamical variables itself was used with the
unit aqs0 , and lqs0 ,s1 is some integer. In order to derive
the deterministic equations for F , Eq.(1) with the set
of rules given in Eq.(3) will be used as the starting set
of stochastic evolution equations. The short hand nota-
tion l1 = l01, l11, l21, l31, l41 was also used in order to save

printing. The stochastic weights and the dynamical vari-
ables, in Eq.(3), are labeled with an index r0 emphasiz-
ing that the value depends on a specific realization. The
stochastic weights can, in general, be a complex num-

ber with a real w
′(r0)
s01,l1

and an imaginary part w
′′(r0)
s01,l1

. In
order to be more formal, an arbitrary weight can be de-

noted by w
(r0)
u where u is some set of indexes u1, ..., uρ

non necessarily of the same type as in Eq.(3). A general
expression of a weight as a product of Kronecker deltas
and Heaviside’s functions can be written as

w(r0)
u =

∏
{k′}

δik′ ,jk′

∏
{v′}

θ
(
Pv′ − ξ

(r0)
v′

) θ
(
P

′

c′ − ξ
′(r0)
c′

)

+ i
∏
{k′′}

δik′′ ,jk′′

∏
{v′′}

θ
(
Pv′′ − ξ

(r0)
v′′

) θ
(
P

′′

c′′ − ξ
′′(r0)
c′′

)
. (4)

where {k′} and {v′} are sets of indexes that are used to
label discrete and continuous factors, respectively. These
indexes correspond to the real part of the complex weight

w
(r0)
u . c′ denote the index that connect the real part of

the stochastic weight with the real part of the determin-
istic weight of some other approach. In the same way,
{k′′}, {v′′} and c′′ denote the indexes corresponding to

the imaginary part of w
(r0)
u . The imaginary unit is i.

There are some key questions that allows the construc-
tion of deterministic evolution equations from an average
over realizations of a stochastic evolution equation. First,
the stochastic weights must be expressed as products of
some delta- and theta-functions whose arguments contain
discrete as well as continuous stochastic variables, respec-
tively. The definition of these functions are: δx,y is equal
to 1 if x = y and 0 otherwise, and θ (x− y) is equal to 1
if x− y ≥ 0 and 0 if x− y < 0, for any x and y. Second,
all these stochastic variables (discrete and continuous)
are statistically independent, allowing the factorization
of the averages. Third, two of the theta-functions, corre-
sponding to the real and imaginary part of the stochastic
weights, contain in its argument the functions P

′

c′ and P
′′

c′′

that allows to connect the average over realizations of all
the stochastic weights with the deterministic weights of
any other deterministic approach (e.g. master equation,
etc.). For the interpretation of these functions that define
the weights see the first example in Section 4 of [24].
The above general definition of a generic stochastic

weight allows to demonstrate the following theorem.

III. A THEOREM CONNECTING THE
AVERAGE OVER REALIZATIONS OF THE

STOCHASTIC WEIGHTS WITH THE
DETERMINISTIC WEIGHTS

The proof of the theorem can be made in an almost
verbatim way, with the appropriate changes in the
notation, that the one made in [25]. For the sake of
completeness it is reproduced the theorem and the proof
below.

Theorem. A set of deterministic evolution equations
is obtained after an average over realizations of a set
of stochastic evolution equations like those given in
Eq.(1) with the set of rules given in Eq.(3) which posses
stochastic coefficients of the general form given in Eq.(4).
The connection with a set of deterministic evolution
equation, obtained with other approach, is made after an
appropriate election of the functions P

′

c′and P
′′

c′′ .

Proof. The proof is obtained in two steps in a very
simple way. First, using standard results of statistical
mechanics (see the appendix of [24]), the general deter-
ministic equations are obtained after average over real-
izations on both two sides of Eq.(1) with the rules given
in Eq.(3), in the following general form
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F
(
{qrα1

(1)sβ1
(t+ a0,x)}

)
= F

(
{qrα1

(1)sβ1
(t,x)}

)
+

∑
{s01,l1}

ws01,l1

× F
(
{qrαs01

(s01)sβs01
(t− l0αa0,x11 +∆x11) + lqs0 ,s1aqs0 }

)
,

∀ s01 ∈ {1, 2}, t ≥ 0, x1, ..., x4 ∈ Λ, (5)

where ws01,l1 = w
(r0)
s01,l1

are the correspond-
ing deterministic weights. Note that it was also

used F
(
{qrαs01

(s01)sβs01
(t− l0αa0,x11 +∆x11)}

)
=

F
(
{q(r0)rαs01

(s01)sβs01
(t− l0αa0,x11 +∆x11)}

)
=

F
(
{q(r0)rαs01

(s01)sβs01
(t− l0αa0,x11 +∆x11)}

)
for α ≥ −1,

which is the simplest closure that can be used and
usually correspond to a (1,0)-closure. The deter-
ministic weights can be written in the usual form

ws01,l1 = w
′

s01,l1
+ i w

′′

s01,l1
. Note that the factorization

of the averages over realization was used because it was
assumed that the discrete and continuous stochastic
variables in all w’s are statistically independent. For
a demonstration that the product of two functions of
complex stochastic variables factorizes, see the appendix
of [24].

Second, the last step needed to obtain the connection
between the approaches is to make an average over real-
izations on both two sides of Eq.(4). The result is

w
(r0)
u =

∏
{k′}

δik′ ,jk′

∏
{v′}

θ
(
Pv′ − ξ

(r)
v′

) θ
(
P

′
c′ − ξ

′(r)
c′

)
+ i

∏
{k′′}

δik′′ ,jk′′

∏
{v′′}

θ
(
Pv′′ − ξ

(r)
v′′

) θ
(
P

′′
c′′ − ξ

′′(r)
c′′

)

=
∏
{k′}

1

Mk′

∏
{v′}

Pv′

P
′

c′ + i
∏
{k′′}

1

Mk′′

∏
{v′′}

Pv′′

P
′′

c′′ , (6)

where Mk′ and Mk′′ are the number of element of the
k-th discrete set. Note that it was assumed that all the
intervals of variation of all the continuous stochastic vari-
ables is [0, 1]. If some of the intervals is different, the
result of Eq.(56) in the appendix of [24] must be used.
The connection with another approach is easily obtained.
Equating the coefficients of the expressions of the weights(
w

(r0)
u = wc

)
, P

′

c′ and P
′′

c′′ can be found as

P
′

c′ =
w′

c∏
{k′}

1
Mk′

(∏
{v′} Pv′

) , (7)

P
′′

c′′ =
w′′

c∏
{k′′}

1
Mk′′

(∏
{v′′} Pv′′

) , (8)

where w′
c and w′′

c are the real and imaginary part of wc,
respectively. If the deterministic evolution equation is ex-
pressed as a partial differential equation like those given
in the example in section 4, P

′

c′ and P
′′

c′′ , in Eqs.(7,8),
must be multiplied by a0, when necessary, in order to
recover the correct deterministic weights. These expres-
sions allows to establish the complete equivalence with

the deterministic weights corresponding to some other
approach.

IV. ILLUSTRATIVE EXAMPLES

In this section two illustrative examples are studied
in detail in order to show the basic steps necessary to
obtain the usual evolution equation for the generalized
coordinates and momenta for the Hamiltonian approach.
The second example correspond to the evolution equa-
tions for the Lagrangian which are the well known Euler
equations.

A. Stochastic evolution updating for the discrete
Hamiltonian approach

One of the usual way of constructing the evolution
equations in physics is the Hamiltonian approach con-
sisting in providing two subsets of evolution equations.
The first subset are the evolution equation for the dy-
namical variables of type 1 (s0 = 1) or generalized coor-
dinates q = q1, ..., qi, ..., qn and the second for dynamical
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variables of type 2 (s0 = 2) or the generalized momenta
p = p1, ..., pi, ..., pn. The corresponding evolution equa-
tions are the well known canonical equations given by

dqi
dt

=
∂H(q, p)

∂pi
for i = 1, ..., n, (9)

dpi
dt

= −∂H(q, p)

∂qi
for i = 1, ..., n, (10)

where H(q, p) is the well known Hamiltonian function.
This set of deterministic evolution equations are the most
similar to the usual stochastic evolution equations used
in previous companion papers [23-25]. In order to obtain
the canonical evolution equations from a set of stochas-
tic evolution equation the following discrete stochastic
evolution equations are necessary:

q
(r0)
(1)s1

(t+ a0) = q
(r0)
(1)s1

(t) + w
(r0)
0 H(q

(r0)
(1) (t), q

(r0)
(2) (t)) + w

(r0)
1 H(q

(r0)
(1) (t), q

(r0)
(2)s1(t) + aq2), ∀ s1 ∈ {1, ..., S1}, t ≥ 0,

q
(r0)
(2)s1

(t+ a0) = q
(r0)
(2)s1

(t) + w
(r0)
2 H(q

(r0)
(1) (t), q

(r0)
(2) (t)) + w

(r0)
3 H(q

(r0)
(1)s1(t) + aq1 , q

(r0)
(2) (t)), ∀ s1 ∈ {S1 + 1, ..., S}, t ≥ 0,

(11)

where the last two summand on the right-hand side of
both two equations are the corresponding rules G that
define the evolution of the model. Note that it was used
the notation q

(r0)
(k) (t) = {q(r0)(k)s1

(t)} and q
(r0)
(k)s1

(t) + aqk =

{q(r0)(k)1(t), ..., q
(r0)
(k)s1

(t)+aqk , ..., q
(r0)
(k)n(t)} for k = 1, 2, in or-

der to save printing in the arguments of H. Note that
in both two equations, S1 = S − S1 = n, was used.
Another feature that posses the equations is that the dy-

namical variables q
(r0)
(1)s1

(t) and q
(r0)
(2)s1

(t) depend only on

the evolution parameter t and do not depend explicitly
on the coordinates x. The subindex s1 numerate the
components of the dynamical variables and, in order to
provide the same equations than those given above using
the Hamiltonian approach, must be equal to n in each
equation. This subindex correspond to i in the above
approach. In order to simplify the notation the subindex

in the weights were reduced to one number because all
subindex included in l do not exist due that the dynam-
ical variables of both two types do not depend explicitly
on x. Another new feature in these equations is that also
the dynamical variables itself were discretized with unit
intervals aq1 and aq2 corresponding to the dynamical vari-
ables of the type (1) and (2) respectively. The weights are

w0 = θ(P0−ξ
(r0)
0 ), w1 = θ(P1−ξ

(r0)
1 ), w2 = θ(P2−ξ

(r0)
2 ),

and w3 = θ(P3−ξ
(r0)
3 ), where θ(u) for any u is the Heave-

side’s function which takes the value 0 for u < 0 and 1
for u ≥ 0. In the argument of the theta functions Pk

and ξ
(r0)
k , for any k, are the connecting parameters and

the random numbers taken from the interval [0,1], re-
spectively. The next step necessary to obtain the set of
deterministic evolution equations is to average over real-
izations on both two sides of Eq.(11) given

q(1)s1(t+ a0) = q(1)s1(t) + w0H(q(1)s1(t), q(2)s1(t)) + w1H(q(1)s1(t), q(2)s1(t) + aq2), ∀ s1 = 1, ..., n, t ≥ 0,

q(2)s1(t+ a0) = q(2)s1(t) + w2H(q(1)s1(t), q(2)s1(t)) + w3H(q(1)s1(t) + aq1 , q(2)s1(t)), ∀ s1 = 1, ..., n, t ≥ 0, (12)

where q(s0)s1(t) = q
(r0)
(s0)s1

(t), H(q(1)s1(t), q(2)s1(t)) =

H(q
(r0)
(1)s1

(t), q
(r0)
(2)s1

(t)) = H(q
(r0)
(1)s1

(t), q
(r0)
(2)s1

(t)) and, as

proved in [24], w
(r0)
k = wk = Pk for any k, was used.

Expanding both two equations in a Taylor series up to
O(a0), O(aq1) and O(aq2) and arranging terms, the fol-
lowing equations are obtained

(w0 + w1)H(q, p)− a0
∂qi
∂t

+ w1aq2
∂H(q, p)

∂pi
+O(a0) +O(aq1) +O(aq2) = 0, ∀ s1 = 1, ..., n,

(w2 + w3)H(q, p)− a0
∂pi
∂t

+ w3aq1
∂H(q, p)

∂qi
+O(a0) +O(aq1) +O(aq2) = 0, ∀ s1 = 1, ..., n, (13)
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where, in order to obtain the same notation than the one
usually used in the Hamiltonian approach, it was used
the shorthand notation qi = q(1)s1(t) and pi = q(2)s1(t).
Also q = {q(1)s1(t)} and p = {q(2)s1(t)} was used. The
last step necessary to find the same equations than those
given in Eqs.(9,10), the coefficients in Eq.(13) must sat-
isfy the following set of linear equations

(w0 + w1) = 0,

(w2 + w3) = 0,

w1aq2 = a0,

w3aq1 = −a0, (14)

whose solution is w1 = a0

aq2
, w3 = −a0

aq1
, w0 = −a0

aq2
and

w2 = a0

aq1
. The connecting parameters are easily obtained

and the corresponding values are P1 = w1 = a0

aq2
, P3 =

w3 = −a0

aq1
, P0 = w0 = −a0

aq2
and P2 = w2 = a0

aq1
, allowing

to obtain the same deterministic equations as Eqs.(9,10).

B. Stochastic evolution updating for the discrete
Lagrangian approach

The other usual way to obtain the evolution equation
for the Lagrangian L(q, q̇), which is a function of the
n dynamical variables q = q1, ..., qi, ..., qn and the cor-
responding velocities q̇ = dq1

dt , ...,
dqi
dt , ...,

dqn
dt , is using a

variational method and the following deterministic evo-
lution equations for the lagrangian is obtained

∂L(q, q̇)
∂qi

− d

dt

∂L(q, q̇)
∂q̇i

= 0 for i = 1, ..., n,(15)

known as Euler’s equations.

In order to find a set of deterministic evolution equa-
tions like Euler’s equations, from a set of discrete stochas-
tic evolution equations, the following updating rules are
necessary

L(r0)(q(1)(t+ a0), q̇(1)(t+ a0)) = L(r0)(q(1)(t), q̇(1)(t)) + G(r0)(t, q(1)(t), q̇(1)(t), Xξ)

for i = 1, ..., n (16)

where

G(r0)(t, q(1)(t), q̇(1)(t), Xξ) = w
(r0)
00 L(r0)(q(1)(t), q̇(1)(t)) + w

(r0)
01 L(r0)(q(1)i(t) + aq1 , q̇(1)(t))

+ w
(r0)
02 L(r0)(q(1)(t), q̇(1)i(t) + aq2)

+ w
(r0)
12 L(r0)(q(1)(t+ a0), q̇(1)i(t+ a0) + aq2). (17)

The index r0 indicates that the evolution equations
correspond to a particular realization and the shorthand

notation

L(r0)(q(1)(t), q̇(1)(t)) = L(q(r0)(1)1(t), ..., q
(r0)
(1)i (t), ..., q

(r0)
(1)n(t), q̇

(r0)
(1)1(t), ..., q̇

(r0)
(1)i (t), ..., q̇

(r0)
(1)n(t)),

L(r0)(q(1)i(t) + aq1 , q̇(1)(t)) = L(q(r0)(1)1(t), ..., q
(r0)
(1)i (t) + aq1 , ..., q

(r0)
(1)n(t), q̇

(r0)
(1)1(t), ..., q̇

(r0)
(1)i (t), ..., q̇

(r0)
(1)n(t)),

L(r0)(q(1)(t), q̇(2)i(t)) = L(q(r0)(1)1(t), ..., q
(r0)
(1)i (t), ..., q

(r0)
(1)n(t), q̇

(r0)
(1)1(t), ..., q̇

(r0)
(1)i (t) + aq1 , ..., q̇

(r0)
(1)n(t)), (18)

was used in order to save printing. Also q̇(1)(t) =
q(2)(t) was used in order to have a notation similar to the

usual approach given above.The stochastic weights are

w
(r0)
uv = θ(Puv − ξ

(r0)
uv ) for any u and v. In the argument
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of the Heaveside’s function Puv and ξ
(r0)
uv = ξ

(r0)
uv (t) are

the connecting parameter and a random number taken
from an interval [0, 1] at time t. Xξ, in the argument of

G(r0), designate the set of stochastic variables {ξ(r0)uv }, for

any u and v. After an average over realizations on both
two sides of Eq(16), with the rules given in Eq,(17), the
following discrete deterministic equation is obtained

L(q(1)(t+ a0), q̇(1)(t+ a0)) = L(q(1)(t), q̇(1)(t)) + w00L(q(1)(t), q̇(1)(t))
+ w01L(q(1)i(t) + aq1 , q̇(1)(t)) + w02L(q(1)(t), q̇(1)i(t) + aq2)

+ w12L(q(1)(t+ a0), q̇(1)i(t+ a0) + aq2),

for i = 1, ..., n (19)

where a (1,0)-closure L(q(1)(t), q̇(1)(t)) =

L(r0)(q(1)(t), q̇(1)(t)) = L(q(r0)(1) (t), q̇
(r0)
(1) (t)) and

the factorization w
(r0)
uv L(r0)(q(1)(t), q̇(1)(t)) =

w
(r0)
uv L(r0)(q(1)(t), q̇(1)(t)) was used. As was proved in

the appendix of [24], w
(r0)
uv = θ(Puv − ξ

(r0)
uv ) = Puv for

any u and v . Expanding both two sides in Eq.(18) in a
Taylor series up to O(a0), O(a1) and O(a2) the following
deterministic differential equation is obtained

−aq1w00

∂L(q(1), q̇(1))
∂q(1)i

+ (w00 − w01 − w02 + w12)L(q(1), q̇(1))

+ aq2 (w12 − w02)
∂L(q(1), q̇(1))

∂q̇(1)i
+ 2a0 (w12 − 1)

∂L(q(1), q̇(1))
∂t

+ 2a0a2w12
d

dt

∂L(q(1), q̇(1))
∂q̇(1)i

+O(a20) +O(a21) +O(a22) = 0

for i = 1, ..., n. (20)

In order to obtain the Euler’s equations, the coeffi-
cients must satisfy the following set of linear equations

−aq1w00 + 2a0aq2w12 = 0,

w00 − w01 − w02 + w12 = 0,

w12 − w02 = 0,

w12 − 1 = 0,

(21)

whose solution is w00 = (2a0aq2)/aq1 , w01 =
(2a0aq2)/aq1 , w02 = 1 and w12 = 1. It is easy to see
that Eq.(19) becomes

− 2a0aq2

(
∂L(q, q̇)

∂qi
− d

dt

∂L(q, q̇)
∂q̇i

)
+O(a20) +O(a2q1)

+ O(a2q2) = 0, for i = 1, ..., n, (22)

which are, except for the coefficient −2a0a2,
the well known Euler’s equations. Finally, the

connecting parameters can be easily obtained as
P00 = w00 = (2a0aq2)/a1, P01 = w01 =
(2a0aq2)/aq1 , P02 = w02 = 1 and P12 = w12 =
1. It must be emphasized that it was used the con-
venient shorthand notation L(q(1), q̇(1)) = L(q, q̇) =
L(q1(t), ..., qi(t), ..., qn(t), q̇1(t), ..., q̇i(t), ..., q̇n(t)) in order
to save printing.

V. CONCLUSIONS AND OTHER POSSIBLE
GENERALIZATIONS

The extension of the discrete stochastic evolution equa-
tions approach to the case where the ”object” that
evolves are functions of the dynamical variables that are
components of tensors of arbitrary rank, like the Euler’s
equations for the Lagrangian, was studied. A special
case, where the function of the dynamical variables is
the dynamical variable itself is studied initially in subsec-
tion 4.1 where the canonical equations for the generalized
coordinates and momenta are derived. The most general
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case was considered in subsection 4.2 and the Euler equa-
tions that allow to find the Lagrangian, which is a func-
tion of the dynamical variables, were obtained. Other
special cases, but not less important, of this theorem can
be: 1) the product of dynamical variables or correlations,
2) the Hamilton-Jacobi equations for the action S which
is also a function of the dynamical variables, etc. As can
be easily seen the theorem is more general than the ex-
amples mentioned above because the evolution equations
could be also non-Markovian and the dynamical variables
can be tensors of any rank.
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