REFERENCIAS
[1] Y. Cui, Z. Ge, J. D. Rizak, C. Zhai, Z. Zhou, S. Gong e Y. Che. Deficits in water maze performance and
oxidative stress in the hippocampus and striatum induced by extremely low frequency magnetic field exposure.
PLoS One 7, e32196 (2012).
[2] K. Kitaoka, M. Kitamura, S. Aoi, N. Shimizu y K. Yoshizaki. Chronic exposure to an extremely low-frequency
magnetic field induces depression-like behavior and corticosterone secretion without enhancement of the
hypothalamic–pituitary–adrenal axis in mice. Bioelectromagnetics 34, 43-51 (2013).
[3] T. Balassa, P. Varró, S. Elek, O. Drozdovszky, R. Szemerszky, I. Világi y G. Bárdos. Changes in synaptic
efficacy in rat brain slices following extremely low-frequency magnetic field exposure at embryonic and early
postnatal age. Int. J. Dev. Neurosci. 31, 724-730 (2013).
[4] S. Kumar, S. Jain, T. Velpandian, Y. Petrovich Gerasimenko, V. D. Avelev, J. Behari, M. Behari y R. Mathur.
Exposure to extremely low-frequency magnetic field restores spinal cord injury-induced tonic pain and its related
neurotransmitter concentration in the brain. Electromagn Biol. Med. 32, 471-483 (2013).
[5] M. S. Celik, K. Güven, V. Akpolat, M. Z. Akdag, M. Nazıroglu, R. Gül-Güven, M. Y. Çelik y S. Erdogan.
Extremely low-frequency magnetic field induces manganese accumulation in brain, kidney and liver of rats.
Toxicol. Ind. Health 31, 576-580 (2015).
[6] International Commission on Non-Ionizing Radiation Protection and others. Guidelines for limiting exposure to
timevarying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 99, 818-836 (2010).
[7] B. M. Tenorio, M. B. A. Ferreira Filho, G. C. Jimenez, R. N. d. Morais, C. A. Peixoto, R. d. A. Nogueira y V.
A. d. Silva Junior. Extremely low-frequency magnetic fields can impair spermatogenesis recovery after reversible
testicular damage induced by heat. Electromagn. Biol. Med. 33, 139-146 (2014).
[8] N. M. Fournier, Q. H. Mach, P. D. Whissell y M. A. Persinger. Neurodevelopmental anomalies of the
hippocampus in rats exposed to weak intensity complex magnetic fields throughout gestation. Int. J. Dev. Neurosci.
30, 427-433 (2012).
[9] S. Das, S. Kumar, S. Jain, V. D. Avelev y R. Mathur. Exposure to ELF-magnetic field promotes restoration of
sensorimotor functions in adult rats with hemisection of thoracic spinal cord. Electromagn. Biol. Med. 31, 180-194
(2012).
[10] S. Magdaleno-Adame, J. Olivares-Galvan, E. Campero-Littlewood, R. Escarela-Perez y E. Blanco-Brisset.
Coil systems to generate uniform magnetic field volumes. Excerpt from the proceedings of the COMSOL
conference 13, 401-411 (2010).
[11] W. G. Fano, R. Alonso y G. Quintana. El campo magnético generado por las bobinas de Helmholtz y sus
aplicaciones a calibración de sondas. Elektron 1, 91-96 (2017).
[12] E. L. Bronaugh. Helmholtz coils for calibration of probes and sensors: limits of magnetic field accuracy and
uniformity. Proceedings of International Symposium on Electromagnetic Compatibility, 72-76 (1995).
[13] A. F. R. Alvarez, E. Franco-Mejia y C. R. Pinedo-Jaramillo. Study and analysis of magnetic field
homogeneity of square and circular Helmholtz coil pairs: A Taylor series approximation. 2012 VI Andean Region
International Conference, 77-80 (2012).
[14] J. Wang, S. She y S. Zhang. An improved Helmholtz coil and analysis of its magnetic field homogeneity. Rev.
Sci. Instrum. 73, 2175-2179 (2002).
[15] G. B. Bell y A. A. Marino. Exposure system for production of uniform magnetic fields. Journal of
Bioelectricity 8, 147-158 (1989).
[16] D. J. DeTroye y R. J. Chase. The calculation and measurement of Helmholtz coil fields inf. téc. (Army
Research Lab Adelphi MD, 1994).
[17] F. E. Terman. Radio Engineers’ Handbook pag. 60 (McGraw-Hill, New York, 1943).