[18] H. Bonnemann, R. Brinkmann, P. Britz, U. Endruschat, R.
Mortel, U. Paulus, G. Feldmeyer, T. Schmidt, H. Gasteiger
y R. Behm. Nanoscopic Pt-bimetal colloids as precursors
for PEM fuel cell catalysts. J. New Mater. Electrochem.
Syst. 3, 199-206 (2000).
[19] U. A. Paulus, A. Wokaun, G. G. Scherer, T. J. Schmidt,
V. Stamenkovic, N. M. Markovic y P. N. Ross. Oxygen
reduction on high surface area Pt-based alloy catalysts in
comparison to well defined smooth bulk alloy electrodes.
Electrochim. Acta 47, 3787-3798 (2002).
[20] M. A. Genshaw, A. Damjanovic y J. Bockris. Hydrogen
peroxide formation in oxygen reduction at gold electrodes:
I. Acid solution. J. Electroanal. Chem. Interf. Electrochem.
15, 163-172 (1967).
[21] M. Alvarez-Rizatti y K. Jüttner. Electrocatalysis of oxygen
reduction by UPD of lead on gold single-crystal surfaces.
J. Electroanal. Chem. Interf. Electrochem. 144, 351-363
(1983).
[22] S. Štrbac y R. R. Adži
´
c. Oxygen reduction on single crystal
gold electrodes in acid solutions. J. Serb. Chem. Soc. 57,
835-848 (1992).
[23] S. Štrbac y R. R. Adži
´
c. The influence of pH on reaction
pathways for O
2
reduction on the Au (100) face. Electro-
chim. Acta 41, 2903-2908 (1996).
[24] V. Torma y G. Lang. Investigation of the electrochemical
reduction of molecular oxygen at gold electrodes by impe-
dance spectroscopy. Mag. Kem. Fol. 104, 265-276 (1998).
[25] M. Haruta, N. Yamada, T. Kobayashi y S. Iijima. Gold
catalysts prepared by coprecipitation for low-temperature
oxidation of hydrogen and of carbon monoxide. J. Catal.
115, 301-309 (1989).
[26] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J.
Genet y B. Delmon. Low-temperature oxidation of CO over
gold supported on TiO
2
, α-Fe
2
O
3
, and Co
3
O
4
. J. Catal.
144, 175-192 (1993).
[27] M. Haruta. Size-and support-dependency in the catalysis of
gold. Catal. Today 36, 153-166 (1997).
[28] B. C. Beard y P. N. Ross Jr. Characterization of a Titanium-
Promoted Supported Platinum Electrocatalyst. J. Electro-
chem. Soc. 133, 1839 (1986).
[29] T. A. F. Lassali, J. F. C. Boodts, S. C. De Castro, R. Lan-
ders y S. Trasatti. UHV and electrochemical studies of the
surface properties of Ru+ Pt+ Ti mixed oxide electrodes.
Electrochim. Acta 39, 95-102 (1994).
[30] L. A. Da Silva, V. A. Alves, M. A. P. Da Silva, S. Trasatti
y J. F. C. Boodts. Electrochemical impedance, SEM, EDX
and voltammetric study of oxygen evolution on Ir+ Ti+ Pt
ternary-oxide electrodes in alkaline solution. Electrochim.
Acta 41, 1279-1285 (1996).
[31] K. Tammeveski, T. Tenno, A. Rosental, P. Talonen, L.-S.
Johansson y L. Niinistö. The Reduction of Oxygen on Pt-
TiO
2
Coated Ti Electrodes in Alkaline Solution. J. Electro-
chem. Soc. 146, 669 (1999).
[32] G. Fóti, C. Mousty, K. Novy, C. Comninellis y V. Reid.
Pt/Ti electrode preparation methods: application to the
electrooxidation of isopropanol. J. Appl. Electrochem. 30,
147-151 (2000).
[33] S. Neophytides, S. Zafeiratos y M. Jaksic. Selective interac-
tive grafting of composite bifunctional electrocatalysts for
simultaneous anodic hydrogen and Co oxidation: I. Con-
cepts and embodiment of novel-type composite catalysts.
J. Electrochem. Soc. 150, E512 (2003).
[34] G. Kokkinidis, A. Papoutsis, D. Stoychev y A. Milchev.
Electroless deposition of Pt on Ti—catalytic activity for
the hydrogen evolution reaction. J. Electroanal. Chem. 486,
48-55 (2000).
[35] K. Tammeveski, M. Arulepp, T. Tenno, C. Ferrater y J. Cla-
ret. Oxygen electroreduction on titanium-supported thin Pt
films in alkaline solution. Electrochim. Acta 42, 2961-2967
(1997).
[36] R. Zejnilovi
´
c, M. Pješ
ˇ
ci
´
c, M. Šljuki
´
c y A. Despi
´
c. Oxygen
reaction on titanium catalysed by gold, platinum and palla-
dium. J. Appl. Electrochem. 14, 481-488 (1984).
[37] M. Vukovi
´
c. Oxygen evolution on an electrodeposited
ruthenium electrode in acid solution—the effect of thermal
treatment. Electrochim. Acta 34, 287-291 (1989).
[38] D.
ˇ
Cukman y M. Vukovi
´
c. Electrochemical behaviour of
an electrodeposited rhodium electrode in alkaline solution.
J. Electroanal. Chem. Interf. Electrochem. 279, 273-282
(1990).
[39] D.
ˇ
Cukman, M. Vukovi
´
c y M. Milun. Enhanced oxy-
gen evolution on an electrodeposited ruthenium+ iridium
coating on titanium. J. Electroanal. Chem. 389, 209-213
(1995).
[40] M. Vukovi
´
c, D. Marijan, D.
ˇ
Cukman, P. Pervan y M. Milun.
Electrocatalytic activity and anodic stability of electrode-
posited ruthenium-rhodium coatings on titanium. J. Mater.
Sci. 34, 869-874 (1999).
[41] M. Lohrengel. Thin anodic oxide layers on aluminium and
other valve metals: high field regime. Mater. Sci. Eng. R
Rep. 11, 243-294 (1993).
[42] A. G. Mantzila y M. I. Prodromidis. Development and
study of anodic Ti/TiO
2
electrodes and their potential use
as impedimetric immunosensors. Electrochim. Acta 51,
3537-3542 (2006).
[43] M. P. Neupane, I. S. Park, S. J. Lee, K. A. Kim, M. H.
Lee y T. S. Bae. Study of anodic oxide films of titanium
fabricated by voltammetric technique in phosphate buffer
media. Int. J. Electrochem. Sci 4, 197-207 (2009).
[44] V. B. Baez y D. Pletcher. The preparation and characteriza-
tion of gold coatings on titanium: the reduction of oxygen.
J. Electroanal. Chem. 377, 231-240 (1994).
[45] M. Pourbaix. Atlas of Electrochemical Equilibria in
Aqueous solutions (Pergamon, New York, 1966).
[46] D. B. Rogers, R. D. Shannon, A. W. Sleight y J. L. Gill-
son. Crystal chemistry of metal dioxides with rutile-related
structures. Inorg. Chem. 8, 841-849 (1969).
[47] I. Boskovic, S. Mentus y M. Pjescic. Electrochemical beha-
vior of an Ag/TiO
2
composite surfaces. Electrochim. Acta
51, 2793-2799 (2006).
[48] R. Adi
´
c, N. M. Markovi
´
c y V. Vešovi
´
c. Structural effects
in electrocatalysis: Oxygen reduction on the Au (100) sin-
gle crystal electrode. J. Electroanal. Chem. Interf. Electro-
chem. 165, 105-120 (1984).
[49] S. Štrbac y R. Adži
´
c. The influence of OH
−
chemisorption
on the catalytic properties of gold single crystal surfaces
for oxygen reduction in alkaline solutions. J. Electroanal.
Chem. 403, 169-181 (1996).
[50] P. Clechet, C. Martelet, J. Martin y R. Olier. Photoelectro-
chemical behaviour of TiO2 and formation of hydrogen pe-
roxide. Electrochim. Acta 24, 457-461 (1979).
[51] T. Clark y D. C. Johnson. Activation of titanium electrodes
for voltammetric detection of oxygen and hydrogen pero-
xide in alkaline media. Electroanalysis 9, 273-278 (1997).
Díaz et al. / Anales AFA Vol. 32 Nro. 1 (Abril 2021 - Julio 2021) 7-14 13