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Las restricciones a la velocidad de evolucion de un estado cudntico, usualmente llamadas “limite de velocidades cudn-
tico” (QSL), presentan importantes consecuencias para problemas de control cudntico. Sin embargo, en su formulacién
usual, no es trivial obtener cotas inferiores tipo QSL para el tiempo de evolucion en el caso de Hamiltonianos depen-
dientes del tiempo con pardmetros desconocidos. En este trabajo presentamos un introduccién a la formulacién del
limite de velocidades cudntico para evolucién unitaria y su conexién con control cudntico. Luego, analizamos nuevos
métodos para obtener cotas inspiradas en el QSL para tiempos de evolucién en problemas de control. Finalmente, ex-
tendemos el trabajo presentado en [Poggi, Lombardo and Wisniacki EPL 104 40005 (2013)] estudiando las propiedades
y limitaciones de las cotas presentadas en un sistema de dos niveles.
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Limitations to the speed of evolution of quantum systems, typically referred to as quantum speed limits (QSLs), have
important consequences for quantum control problems. However, in its standard formulation, is not straightforward
to obtain meaningful QSL bounds for time-dependent Hamiltonians with unknown control parameters. In this paper
we present a short introductory overview of quantum speed limit for unitary dynamics and its connection to quantum
control. We then analyze potential methods for obtaining new bounds on control times inspired by the QSL. We finally
extend the work in [Poggi, Lombardo and Wisniacki EPL 104 40005 (2013)] by studying the properties and limitations

ANALISIS DE COTAS INFERIORES PARA TIEMPOS DE CONTROL Y SU RELACION

of these new bounds in the context of a driven two-level quantum system.
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I INTRODUCTION

Precise control of the dynamics of microscopic systems
is a cornerstone of the ongoing revolution in quantum tech-
nologies like quantum computation and simulation. Indeed,
most physical implementations of quantum devices rely on
accurate and robust manipulation of the relevant degrees of
freedom using time-dependent electromagnetic fields [1-3].
Such advances where made possible by substantial techno-
logical breakthroughs but also by theoretical developments
in the field of quantum control [4, 5]. A crucial part of this
theory is related to implementing the desired transforma-
tions on a quantum system as fast as possible, in order to
avoid undesirable environmental effects which can destroy
the coherence properties of the system [6]. In this context,
during the past two decades there has been a renewed in-
terest on understanding the fundamental limitations on the
speed of evolution of quantum systems. These limitations,
typically referred to as quantum speed limits (QSLs), were
originally formulated via Heisenberg-like uncertainty rela-
tions by Mandelstam and Tamm in the mid 20th century [7],
and have since then been thoroughly studied and general-
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ized to a variety of scenarios, such as open quantum system
dynamics, evolution of mixed states and time-dependent
Hamiltonians [8-15].

The connection between the QSL and practical quantum
control problems received much attention since the work
of Caneva et al. [16], who showed that quantum optimal
control methods [17] could be used to explore what is the
minimal time needed to control a quantum system, and pro-
vided a link with the QSL' bounds for some specific sys-
tems. Since then, numerous studies have implemented this
methodology [18-23]. However, apart from a handful of
cases [24-26], the search for the minimum control time has
to be performed numerically and, even in that case, one can
only find an upper bound to it [22]. So, as has been pointed
out in previous works [23, 27], it is important to develop
lower bounds on control times which are as informative
and tight as possible, while at the same time being com-

The nomenclature can be confusing since the quantum control liter-
ature typically refers to minimum control times as ’quantum speed limit
times’. Such quantity is not directly related to the original quantum speed
limit results given by the Mandelstam-Tamm (and also Margolus-Levitin)
relation. The main difference is that the minimum control time depends on
a target state, while the QSL time does not.

29


https://doi.org/10.31527/analesafa.2020.31.1.29

putable before solving the actual (optimal) control problem.
In this paper we illustrate how the standard QSL formula-
tion is not particularly suitable for this task, because of its
dependence on the (a priori unknown) evolution on the sys-
tem. To demonstrate this point, we present a self-contained
introduction to the standard QSL formulation for unitary
dynamics and its application to time-dependent Hamilto-
nians. We then show that the presented framework, suit-
able extended and modified, can indeed lead to meaningful
lower bounds on the control time. We show three examples
of such bounds which are taken or adapted from previous
works, and explicitly work them out for the paradigmatic
example of state control on a driven two-level quantum sys-
tem.

This paper is organized as follows. In Sec. II we
present an introductory overview on the topic of quantum
speed limits for unitary evolution, going through its origi-
nal formulation as derived from Robertson’s uncertainty re-
lation, and its geometrical interpretation due to Anandan
and Aharonov. Then, in Sec. III we discuss QSLs for
time-dependent Hamiltonians and its corresponding natural
connection with quantum control. Here we argue that the
QSL bounds derived in this formulation cannot generally be
used for bounding control times a priori, i.e., before solv-
ing the optimal control problem, because of the presence
of unknown control parameters. We then revisit scattered
proposals in the literature of bounds which overcome this
issue and discuss their connection with the standard QSL.
Finally, in Sec. IV we compare the aforementioned bounds
in the context of a driven two-level system. In this way we
extend the results of Ref. [28], in which different bounds
derived from the standard QSL where compared originally.
At the end of the article, in Sec. V we present some ideas
for future work and final remarks.

II QUANTUM SPEED LIMIT FORMULATION
FOR UNITARY EVOLUTION

Here we present an introductory overview of the quantum
speed limit formulation for Hamiltonian evolution, includ-
ing derivations of the most relevant mathematical expres-
sions. Note that we do not discuss extensions and general-
izations beyond unitary dynamics; the reader interested in
a complete review on this topic is advised to consult Ref.
[29].

Overview

In 1945, Mandelstamm and Tamm [7] derived a general-
ization of Heisenberg uncertainty relation between time and
energy, that could be applied to any quantum system. We
re-derive it here, starting from Robertson’s inequality [30]

1 2
((8A)*)((8B)%) = 7 [([ABDI, 0]
where 04 = A — (A).
Heisenberg’s equation

For any operator A we can write

dA i

g h[A,H]- (@)
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By taking the expectation value in the last expression we
obtain d0A) )
i

— =——(|A,H]). 3

=L {AH)) )

We now identify operator B in Eq. (1) with the system
Hamiltonian H and combine with Eq. (3) to obtain

h|d(A)
AEAA > — | — 4
> 2‘ ar “)
where AA = /(A — (A))2, and AE = AH. We can further
define

; ®)

d(A)

Aty =
’ dt

which has units of time. We then arrive at the Mandelstam-
Tamm relation

(6)

In this formulation, Az4 is interpreted as a characteristic
time related to the time evolution of observable A. The link
between this quantity and the physical evolution time was
studied first by Fleming [8] and then by Bhattacharyya [9],
in the following way. Consider expression (6) under the
specific choice of A = |¢)(do|, with |@9) some arbitrary
pure state. If we take the expectation values in (6) with re-
spect to the evolved state |¢;) = U; |@p), it is easy to see that

h

(A) = |(¢:]90)|* = P, (7

where we have introduced the short-hand notation for P,
the time-dependent survival probability. Eq. (6) can now be
expressed as

& AE
d
— 2L <™ ®)
BO-B)
We can use the relation % [arccos(x)] = —(1 7x2)—1/2 to
write (8) in a more compact form
d AE(t
Earccos(\/ﬁ) < ﬁ( ) ©)

This is the main result by Bhattacharyya. If the initial
state |@) evolves subject to a time-independent Hamilto-
nian H, then the inequality above can be readily integrated
from ¢ = 0 to ¢, obtaining

h
1> arceos (|9l ¢1)) = 1gisz.- (10)

This is the Mandelstam-Tamm bound. In the particular
case where |¢,) is orthogonal to |¢), we obtain fggy, = 4r..
This expression sets a bound on the minimum time required
for a system to evolve from |@) to an orthogonal state. For
completeness we mention that, for this case, Margolus and
Levitin [31] also derived a similar bound, but in terms of

the mean energy of the state,

Th L
1> —= 10SLs

2oF (1)

where E = (H — gl), i.e. the expectation value of the
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Hamiltonian with respect to the ground state. Giovannetti
et al. [10] later generalized this result to non-orthogonal
states, and coined the term “quantum speed limit time” for
tosz- Finally, Levitin and Toffoli [32] showed that the uni-
fied bound

wh nh

t>ming ——, — ¢, (12)
2AE’2F

is tight, meaning that for every time-independent Hamilto-

nian there is a choice of initial state for which the equality

in (12) holds.

Geometric quantum speed limits

Bhattacharyya’s result of Eq. (9) has an insightful ge-
ometrical interpretation, which was first noted by Anan-
dan and Aharonov [11] in the following way. Consider the
Fubini-Study distance between two pure states,

s(¢1,92) = 2arccos(|{(91¢2)]), (13)
and define ds = s (¢, ¢4, ) With
[9rsar) = e~ HIOU gy} (14)

for some state |¢) and a generally time-dependent Hamil-
tonian H (). Since

(Bl brra) P = 1 — £ AE(12 di + 6(dr),

= (15)

then the differential length element is given by

2
ds = —AE(t)dt

- (16)

which is formally Eq. (9) rewritten with different notation.
Integration of Eq. (16) from ¢ = 0 to ¢ yields the length
of the path traversed by the evolution going from the ini-
tial state |@y) to the evolved state |¢). Clearly, such length
must be greater or equal than s(¢@o, @), the length of the
geodesic path joining both states. This can be appreciated
in the schematic drawing of Fig. 1. Thus, we have derived
the Anandan-Aharonov relation

5(d0,01) < Z/OZAE(t’)dt’, (17)

where we have (finally) set A = 1.

|b4)
b0)

2 [FAE(t) dt’

actual path

FIG. 1: Schematic drawing of the time evolution of quantum
states. Anandan-Aharonov relation (17) expresses the fact that
the length of the actual path of the evolution is necessarily larger
or equal than the length of the geodesic path between the initial
and evolved state.

Note that expression (16) also tells us that energy vari-
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ance AE(t) can be seen as a measure of the Hilbert space
velocity of the state |¢,). In particular, AE measures the
component of |¢;) which is perpendicular to |¢,) [33-35].
We can see this in the following way. If we write the time

derivative of the quantum state as |¢;) = |;) H + |¢',>L, then
we have that, by definition,
Al : .
10" = |¢r) <¢t\¢t> =—i(E)|¢r), (13)

where we have used |¢;) = —iH, |¢;) and noted (¢;| H; |¢;) =
(E). This result tells us that the phase of the quantum state
evolves at a rate given by (E). The remaining perpendicular

component of the velocity, |q>.t)L = o) — o) H, is such that

(@) + (916 = (16!) — (16])

(H?) — (H)* = AE%. (19)

ey 1> =

It can be readily seen that the Mandelstam-Tamm bound
is recovered from the Anandan-Aharonov relation when the
dynamics is generated by a time-independent Hamiltonian,
in which AE is always time-independent itself. As such,
the inequality (10) has a purely geometrical nature, and its
saturated if and only if the motion of the system state is
along a geodesic in Hilbert space.

Extensions and other studies

Most of the extensions and generalizations of the
quantum speed limit formulation have been pursued in this
geometrical setting. In particular, bounds have been derived
for the maximum speed of evolution under non-unitary
dynamics almost simultaneously by Taddei et al. [12],
Del Campo et al. [14] and Deffner and Lutz [13]. Special
attention has been devoted to studying the predicted
speed-up of the evolution in open systems undergoing
non-Markovian dynamics [36-39]. Other important cases
of study are QSLs for mixed states [40—45], the geometric
characterization of the QSL [46-49] and its connection
to parameter estimation theory [12, 50-52]. Extensive
analysis of the current state of knowledge on these topics
have been published as reviews in Refs. [29, 53].

IIT CONNECTION TO QUANTUM CONTROL
QSL for time-dependent Hamiltonians

Consider a quantum system initially prepared in state
|wo), which evolves according to a Hamiltonian H (ii(t)),
where ii(2) is a set of generally time-dependent parameters
(the control fields). We wish to drive the system to some
target state ‘l[/g> at some final time T by properly choosing
i(r). Tt is natural to ask then, what does the quantum
speed limit formulation tell us about the time 7" required to
perform that process? Can it be made arbitrarily fast? Can
we establish a lower bound for 7'?

At first glance, it is obvious that nor the Mandelstam-
Tamm (8) nor the Margolus-Levitin (11) bounds can be ap-
plied to this setting, since quantum control problems deal
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generally with time-dependent Hamiltonians. We then go
back to the Anandan - Aharonov relation (17) to obtain a
bound on the evolution time. This can be done in a number
of ways: one of them was proposed by Deffner and Lutz
[15], and it simply consists on rewriting Eq. (17) as

-, areeos (|(yo|y(1))])

T 2
AG ; (20)

where we defined the time-average of the energy variance
simply as
— 1

AE = — /(: AE(t)dt'. (21)

.

We can now evaluate (20) in ¢t = T, such that if there is a
time T such that |y(T)) = |l//g>, then the following relation
must hold

 arccos (](71110|‘/’g>‘)
- AE

= Tost, (22)

However, a closer look at expression (22) reveals that, in
order to compute the bound, we need both an actual choice
of u(¢) and the complete time-evolved state |y(¢)). This
contradicts our initial purpose, which is to estimate the min-
imum evolution time without solving the dynamics, and
moreover without knowing the actual control field which
will be used to drive the system. Further insight can be ob-
tained by casting the expression (22) into the form

. s(Wo, W) _SgeodT

Ter = = 23
L T AE() =

Spath

In the last expression, we can see that the lower TQ*SL
depends on two geometrical quantities: the length of the
geodesic between |yp) and ‘l//g> and the length of the
actual path. Moreover, the quantum speed limit time could
20 to zero if the spun > Sgeod- It is then clear that this
quantity gives us information about distances in Hilbert
space, but not about the speed at which those paths are
traversed. We also point out that other bounds on the
evolution time can be extracted from the general Anandan
- Aharonov relation (see [38] for an example). However, as
discussed in Ref. [28], in all cases information about the
evolution of the system is required to compute such bounds.

Methods for bounding control times

In the previous subsection we showed that the usual
quantum speed limit formulation is in general not suitable
for obtaining bounds on the evolution time of a controlled
quantum system a priori (i.e., without needing to solve the
Schrodinger equation). Here, we analyze various methods
to overcome this limitation.

We begin by explicitly formulating the problem of in-
terest. Consider a quantum system which evolves unitar-
ily under the action of a parameter-dependent Hamiltonian
H (i), with i = ii(t) the (generally time-dependent) con-
trol fields. Although the form of the time-dependence is
unknown a priori, we consider that the control fields may
have constraints of the form |u;(¢)| < u**. Let us fix an
initial state |yo) and a target state |l//g>. We wish to obtain
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a lower bound on the evolution time T, where T is such that
lw(0)) = |wp) and |y(T)) = |y, ). The bound should be
computable with all glven 1nf0rmat10n, i.e., it should be of
the form
T > tin (H, {u"} [0) | )) - 24)
Our first approach to this problem is to manipulate the
Anandan - Aharonov relation (17) in order to drop any im-
plicit or explicit dependence on |y(¢)) or #(¢). This can be
done by using the following inequality

2AE(1) < V2|[H(1)|| = \/2tr(H(1)?),

which was derived by Brody in [54]. Combining (17) and
(25) we can write

(25)

(1//0, < f/ ||H H dr < \/>||HHmaxT (26)

In the last step, we bounded ||H || by its maximum value,
which will be a function of {#/*”} in general. In this way
we have successfully derived an inequality without using
information about |y(¢)) nor #(r). Rearranging the last
expression, we obtain that if there is a time 7 for which
|W(T)) = | ). then it holds that

< S(¥o, )
~ V2UlH e

Note that the definition of 3,

nun

initially proposed, c.f. Eq. (24).

= 27)

is clearly of the form we

Another approach to obtain a bound of the form (24)
can be derived from a result by Pfeifer in Refs. [55, 56],
in which he proposes that general time-energy uncertainty
relations for time-dependent Hamiltonians should be com-
putable without solving Schrédinger’s equation. The main
result reads as follows given a quantum state |y(¢)) which
evolves according to zdl lw())=H(@)|w(t)) with |y (0)) =
|wo), and an arbitrary reference state |¢), then the following
relation holds

(elw()] § sin. (8 £h(1)),

where 6 = arcsin(|(@|yo)|) =
the a modified sine function

(28)

Z —arccos(|(@|wo)|), sin, is

0 if x<0
sing(x) = ¢ sin(x) if 0<x<I1 (29)
1 if x>1
and we defined
h(t) = min { / AE,(t') di' / AEy, (1) dr’ } (30)
[wo).[®)
where we used the notation AE, = (x|H? |x) — (x|H lx)?.

Pfeifer’s relation (28) is appealing to the quantum control
problem studied here, since it gives bounds for the prob-
ability of finding a driven system in an arbitrary state |@)
[55]. More interestingly, we can extract a bound on the evo-
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lution time itself, in the following way. If we consider the
upper bound in (28) for such probability, and consider the
reference state to be our target state, |@) = |‘V1,> we get
that, attimet =T

[(Welw(T))] < sin. (8 +h(T)). 31

From this expression its clear that, in order to have a suc-
cessful control process, we need the upper bound to be as
large as possible, i.e. 1. Looking at the definition (29), it is
then sufficient to impose

T T 1
S+h(T) 25 = MT) 25 —8=3s(Vo. ). (2)
Note that A(T') depends on T via the control field i(T).
In order to obtain a lower bound for the evolution time, we
proceed as we did when deriving (26) and bound the inte-
gral in (30) by
h(T) < AEY™T with ¥ = v, Y, (33)
where, again, we expect AE;“”‘ to be an explicit function of
{u]"*}. Rearranging the expression above we arrive at

s(Wo, We)

T>
= 2AEpar

=18, with ¥ = ypory,. (34)
Again, tf”-” is also of the form (24) and thus allows us
to obtain a lower bound on the minimum evolution time

without knowing the actual shape of #(r).

We now explore an interesting property of Pfeifer’s
bound (34). Assume the Hamiltonian of the system has the
form

H(u(t)) = Ho + u(t)H,, (35)

where we suppose that the control field u(¢) has dimension-
less units. We can then explicitly write down the variance
of the Hamiltonian as

AE? = AH§ +u® A +u(({Ho, He}) —2(Ho) (Hc)) (36)

Suppose now that our control problem is such that the ini-
tial and target states |yp), | W) are eigenstates of H. Then,
we trivially obtain that AH,. = 0, but also that the crossed
term in (36) vanishes. Inserting this into expression (34) we
get

B s(¥o, V)
mn min{AH() ‘ 48 AH() | Wg}

(37

What is interesting about this result is that it is completely
independent of u(¢); not only of its actual temporal shape,
but also of its maximum possible value. This means that,
even in an unconstrained control problem where u/*** — oo,
there is still a fundamental limit for the speed in which we
can control the system. That limit is set only by the initial
and final states, and the free Hamiltonian Hy,. Note than
analogous bound can be found if |yp), l,l/g> are eigenstates
of H().
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Finally, we present a third method for obtaining a bound
of the form (24). We begin by considering two arbi-
trary time-dependent Hamiltonians H; and H,, and two
respective states |yi(t)) and |y»(f)) such that & |y) =
—iHi (1) [y (r)) with k= 1,2 and |y1(0)) = [y2(0)) = [y0).
We can then write

d .

o vilva) =iy (i — ) [v2) (38)
and then integrate the above expression fromt =0tot =T,
which yields

T
Wi Ta(T) =1 = i [ il (= o) [ye)

= D) 11 < [ ol G0~ o))

IN

T
/0 |Hy —Ho|df'.  (39)

We now take an approach proposed by Arenz et al.
[23]. We consider H; to be of the form (35), i.e. H; =
Hy + u(t)H,, and also fix H, = u(t)H,. For a successful
control protocol, we have that [y (T)) = |y, ), and we can
also integrate |y, (¢)) up to t = T, which trivially yields
[ (T)) = exp (—ia(T)H,) [yo) where a(T) = [ u(i')d".
In this case, expression (39) can be casted as

(i e e [y | < |ol| T (40)

We can further bound this expression in order to get rid
of the dependence on the unknown function u(¢). To do so,
we use the spectral decomposition of He = ¥;€/(¢7)(¢f
and the inequality |Y;z; — 1| > 1=} ;[z;| (with |z;] < 1) to
obtain

n

1= Y [(welo5) (95 1wo) | < [|Ho||T,

J

(41)

which then gives us a new bound of the desired form (24)

=31 (welos) (51w0)|

> =l (42)
[ Holl

min*

A similar expression can be derived in an analogous fash-
ion by choosing H, = Hy. In that case we obtain

1= 2i{welof) (o71wo)

B um || He ||

— 2
— ‘min>

(43)

where now {’¢j()>} are eigenstates of the free Hamiltonian

Hp. Expressions (42) and (43) provide different ways to
bound evolution times in quantum control problems. An
interesting feature of these is that they are explicit functions
of Yo, W,, H and u™*, as opposed to the two previous
results (27) and (34), where the actual dependence on H
and #* has to be worked out on each particular problem.
This means that, for example, ¢! will always give a result

min
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independent of u** regardless the initial and target states.

IV APPLICATION TO A TWO-LEVEL SYSTEM

In the previous section we analyzed an approach for
bounding evolution times in driven quantum systems, which
differs from the standard QSL. The goal was to obtain as
much information as possible about the evolution time with-
out needing to solve the dynamics of the system. In this sec-
tion we will apply these results to the example of a driven
two-level system. For this we consider the following Hamil-
tonian,

(44)

\
= >

H(u)z( )ZMGZ-FAGX,

2

0>

where o;, i = x,y,z is a Pauli operator, A is a parameter that
we consider fixed and u is the control parameter. We de-
fine | gy) to be the ground state of H(y) (i.e. its eigenstate
with negative eigenvalue). We focus on the following con-
trol problem: we start in the initial state |yo) = [g_) and
we wish to drive the system to the target state |l[lg fg+y>
(here y > 0). Moreover, we wish to do so in the minimum
possible time. The problem of finding the required control
field for this process was solved by Hegerfeldt [57], who
proved that different protocols arise whether we place con-
straints on the amplitude |u(¢)| of the control field or not. In
the unconstrained case, the optimal field is

+uy for 0<t<ry
u(t)=< 0 for to<t<to+T , (45)
—uy for th+T <t<2y+T

where uy > A, ugty = /4, and as |u(r)| has no restrictions,
we can choose ug — oo so as to have ¢ty — 0. The total evo-
lution time is then given by

2y

2 T —20
To(l) TH+2g—T= Xarctan <) =

A b

o = A (46)
where we have introduced the angle 0 as an alternative
parametrization of the initial state, tan(0) = %,. In the con-

strained case, where |u(7)| < upmqx = A, the optimal solution
is similar,

+A for 0<t<Th
u(t)=< 0 for Th <t <Ta+T,;r (47)
—A for Ta+T,pr <t <2TA+Typy
The evolution time here is given by
T =T, +2T, 48
opt off + 21 ( )

The optimal values of Tj and T,rr differ whether the
maximum field A is smaller or larger than A?/(4y). The
corresponding expressions are a bit cumbersome and are
given in the Appendix.

Here we will be interested in comparing the actual
optimal control times of Egs. (46) and (48) with the bounds
given in the previous section. Again we emphasize that,
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in order to evaluate the QSL time Tésu cf. Eq. (22),
we would need to know how the system evolves under
the optimal protocol. For each case (i.e. constrained or
unconstrained), TékSL(G) can be worked out, as was done
in [28]. We give the corresponding expressions in the
Appendix as well.

We now turn to computing the new bounds ¢X, with
X=A, B, C1 and C2, which are of the form
T 2 tmin (Haumam lvo) Wg>) : (49)

We stress that, since these expressions are independent of
the actual dynamics of the system, we will derive them
for the constrained and unconstrained protocols in the same
way. This is a key aspect of the approach we propose, since
we should be able to obtain some information about the
minimum evolution time without any knowledge about the
actual optimal protocol. Let us start with 74, of Eq. (25),
for which we calculate the norm of H

A2
|H|| = +/tr (H?) = 4/2 (4 +u2> (50)
We bound this expression to obtain
T
Z—-06
nin = — 7 (51)

min A
/ 2
4 + Uinax

For computing the bound (34) obtained via Pfeifer’s the-
orem, t5. . we need to evaluate the variance AE of H in both
the initial and final states. This can be done in a straightfor-
ward way, and we obtain

A 2u
AE |y, /y, = fcos(0)|1iXtan(9)|, (52)

2

which in turn gives

h(t) = icos(@)/otmin{ﬂi2uA(t)tan(6)|} (53)

In this way we obtain

T _
thin = 19 (54)
208 (0) + Upaysin (0)

We finally consider tﬁ}n, which was defined in Eq. (42).

We recall that here Hy = %Gx is the free term of the Hamil-

tonian, and

¢)jc> refer to |0) and |1), i.e. the eigenstates of
the control operator ¢,. Straightforward calculation gives

1 —sin(0)

cl

toin = ———=———- (55)
NN

We point out that tgizn defined in Eq. (43) turns out to be 0

for this problem, for all values of 6.

Up to this point we have computed three bounds for the
evolution time in this control problem (51), (54) and (55)
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FIG. 2: Optimal evolution time Ty, together with QSL time TéSL
and bound tﬁ}n obtained from Eq. (55) for the composite-pulse

protocol (with unconstrained u(r)) as a function of parameter 6.

which are computed without knowledge of the solution to
the time-optimal control problem. We also have, from [28],
the corresponding QSL time for as a function of 6, 75, (6)
(see Appendix for the explicit expressions) which is com-
puted using such time-optimal solution. Let us first com-
pare all of these expressions with the optimal time 7, for
the case of full population transfer, i.e. Y — o or 6 — 0. In
this case, T,,; = &, while

Tor = thn = % > % =t (56)

Since these were the geometrical expressions, it is
reasonable to have obtained a tight bound: when 6 = 0,
the optimal evolution (which is generated by setting
u = 0) is along a geodesic, which is precisely when the
Anandan-Aharanov relation is saturated. For the remaining
expression, we obtain #4, = 0 due to the dependence on
Umax — . It is interesting to see that Pfeifer’s bound
tB. matches the optimal evolution time also, although
we didn’t use any information about the optimal solution
itself to compute it. This result gives us confidence about
the usefulness of this method to bound evolution times in

optimal control problems.

Let us now analyze the general case of finite 7. For
unconstrained control, we have that u,,,, — . Note that
this immediately gives t;‘“-n =B =0 (recall also that
1€2 = 0), but £} remains nonzero since it does not depend
on the control field constraints, as we pointed out in the
previous section. In Fig. 2 we plot this quantity along
with the actual optimum time 7, as a function of angle
6, which defines the initial and target states. Note that
for 8 = m/2 (y = 0) both states are the same, and thus
T,x = 0. Note also that £$}, which was computed without
knowledge of the optimal evolution, is never tight (except
for 6 = g, which is trivial). However, its interesting to
point out that it is nonzero in spite of the fact that the
control field is unconstrained (and is infinite in this case),
and thus gives a meaningful bound as opposed to 4. and
[rﬁin'

We now compare the bounds for the case of constrained
control, where |u(¢)| < A. As already mentioned, here
the optimal solution depends on the relation between A
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FIG. 3: Optimal evolution time T, together with QSL time TQ*SL

and its bounds obtained from the expressions discussed in the text

for: (a) A > ﬁ—; (in this calculations A = 6%2,) and (b) A < ﬁ—; (in

s 5m

I
4 3 12

[SAE]

. 2 . .

this calculations A = O.Zﬁ—y). Note that in this last case, TQ*SL =
B

t

min®

and y. For A > ﬁ—;,
described by expressions (47) and (A.1),while for A < %,
the solution is the bang-bang protocol, c.f. Eqgs. (47) and
(A.2). In Fig. 3(a) we show results for the bang-off-bang
case. All the bounds considered yield different curves in
general. Moreover, there is no bound tighter than another
for all 8. Of all the bounds computed without the optimal
protocol, tﬁm stands out as the better one. In Fig. 3(b)
we show results for the bang-bang case. Interestingly, in
this case AE is constant throughout the evolution, albeit
the Hamiltonian being time-dependent itself. As a result,
tB. is equal to the Mandelstam-Tamm bound from the
time-independent case, and is tighter than tglln as before.
We thus find that the bound derived from Pfeifer’s theorem
tB. is bigger or equal than all of the others for all 6,
and results in the tighter bound, albeit being computed
without knowledge of the optimal protocol. This result
provides further evidence about the usefulness of this
particular expression for bounding minimal evolution times

in quantum control problems.

we have the bang-off-bang protocol

V  OUTLOOK AND FINAL REMARKS

In this paper we have revisited the quantum speed limit
(QSL) formulation for unitary dynamics driven by time-
dependent Hamiltonians, focusing on its application to
quantum control problems. We argued that the QSL is not
usually useful to obtain lower bounds on control times be-
fore solving the optimal control problem. The reason be-
hind this is that the QSL time depends implicitly on the
actual evolution of the system, which is a priori unknown
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apart from the initial and final (target) state. However, ob-
taining such bounds is interesting and could actually be
helpful to tackle the optimization, since in principle it would
allow one to rule out all possible control times lower than
the bound. With this in mind, here we have proposed a
number of properties that a lower bound should have in or-
der to be useful for control applications, c.f. Eq. (24). The
main such property is that the bound should be computable
without knowing the full time-dependent state. Then we
have put together (and in some cases adapted and further
developed), previous results related to optimal control and
QSL that actually have this properties. We studied these
new lower bounds on control times for a two-level system,
for which the time-optimal control problem has been ana-
Iytically solved. We found that in all cases this new formu-
lation gives meaningful bounds, and provides information
which is comparable to the one obtained with the standard
QSL, albeit being calculated without knowing the optimal
control solution. We point out that the ideas layed down
here for new bounds on control times could in principle be
extended to open quantum systems, using the approach in
Pfeifer’s theorem (28) applied to a metric like the relative
purity between states. More generally while these results
are encouraging, it is expected that the proposed bounds
will not scale favorably with system size [23], as happens
with the geometric QSL itself [58]. As a consequence, fur-
ther work is needed to find new techniques to bound control
times for quantum systems, but we believe that such tech-
niques could benefit from the results presented in this work.
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APPENDIX
A Optimal control times for the constrained problem

Here we give the explicit form of the times T) and T, ¢¢

derived by Hegerfeldt in [57]. For A > ﬁ—;, we have
A2 + A72
Thn = arcsin 4
A oS 2A(A+7)
2
2 Ay—4&
Torr = Karctan i , (A

which is called a ’bang-off-bang’ protocol, while for A <
AZ

Iy the result is

1
Thn = 7zarcsin
A
A2+
T = O (A.2)
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which is typically termed *bang-bang’.

Also, we give expressions for the QSL time for both cases
of interest. All of these results were obtained in [28] and so
don’t derive them again here. For the unconstrained prob-
lem (¢, = o), we have that

: 5(6)T50 (0)
TQSL(G) = TN Lo’
5(0)+ msin(0)
where we defined s(6) = w — 20. For the constrained prob-
lem (0 < o), for the bang-off-bang protocol we have

(A3)

2
o $(0)755/ ()
TQSL(G) - . A
4 (Asin(6) + 5 cos(0)) Ta(0) + AT, ¢£(6)
(A4)
while for the bang-bang protocol the QSL time is
s(6)
T, (0) = . AS
0st(0) 2 (Asin(0) + £ cos(0)) (A
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