REFERENCIAS
[1] N. Bohr. LX. On the decrease of velocity of swiftly moving electrified particles in passing through
matter. Philos. Mag. Series 6 30, 581-612 (1915).
[2] W. Wilson. The quantum-theory of radiation and line spectra. Philos. Mag. Series 6 29, 795-802
(jun. de 1915).
[3] A. Sommerfeld. Zur Quantentheorie der Spektrallinien. Annalen der Physik 356, 1-94 (1916).
[4] S. Wang. Generalization of the Thomas-Reiche-Kuhn and the Bethe sum rules. Phys. Rev. A 60,
262-266 (1999).
[5] H. Bethe. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Annalen der
Physik 397, 325-400 (1930).
[6] R. Jackiw. Intermediate Quantum Mechanics 3rd. ISBN: 9780429973277 (CRC Press, 2018).
[7] F. Bloch. Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie. Annalen der
Physik 408, 285-320 (1933).
[8] E. Fermi. The Ionization Loss of Energy in Gases and in Condensed Materials. Phys. Rev. 57, 485-
493 (1940).
[9] R. Ritchie. Energy losses by swift charged particles in the bulk and at the surface of condensed
matter. Nucl. Instrum. Methods Phys. Res. 198, 81-91 (1982).
[10] J. Jackson. Classical Electrodynamics 2nd. ISBN: 047130932X (Wiley, 1975).
[11] L. Landau y E. Lifshitz. Electrodynamics of Continuous Media 2nd. ISBN: 9780080302751
(Pergamon Press, 1984).
[12] M. Inokuti. Inelastic Collisions of Fast Charged Particles with Atoms and Molecules: The Bethe
Theory Revisited. Rev. Mod. Phys. 43, 297-347 (1971).
[13] M. Dingfelder, D. Hantke, M. Inokuti y H. Paretzke. Electron inelastic-scattering cross sections in
liquid water. Radiat. Phys. Chem. 53, 1-18 (1999).
[14] D. Emfietzoglou, R. Garcia-Molina, I. Kyriakou, I. Abril y H. Nikjoo. A dielectric response study
of the electronic stopping power of liquid water for energetic protons and a new I-value for water.
Phys. Med. Biol. 54, 3451-3472 (2009).
[15] M. Dingfelder. Updated model for dielectric response function of liquid water. Appl. Radiat. Isot.
83, 142-147 (2014).
[16] D. Emfietzoglou. Inelastic cross-sections for electron transport in liquid water: A comparison of
dielectric models. Radiat. Phys. Chem. 66 (2003).
[17] D. Emfietzoglou, F. A. Cucinotta y H. Nikjoo. A Complete Dielectric Response Model for
LiquidWater: A Solution of the Bethe Ridge Problem. Radiat. Res. 164 (2005).
[18] J. Brown y R. Churchill. Complex Variables and Applications 8th. ISBN: 9780073051949
(McGraw-Hill Higher Education, 2009).
[19] P. Debye. Polar molecules. Journal of the Society of Chemical Industry 48, 1036-1037 (1929).
[20] P. Drude. Zur Elektronentheorie der Metalle. Annalen der Physik 306, 566-613 (1900).
[21] H. Royden y P. Fitzpatrick. Real Analysis ISBN: 9780131437470 (Prentice Hall, 2010).
[22] R. Garcia-Molina, I. Abril, C. Denton, S. Heredia-Avalos, I. Kyriakou y D. Emfietzoglou.
Calculated depth-dose distributions for H+ and He+ beams in liquid water. Nucl. Instrum. Methods
Phys. Res. B 267, 2647-2652 (2009).