[23] E. Sjöstedt, L. Nordström y D. J. Singh. An alternative way of linearizing the augmented plane-
wave method. Solid State Commun. 114, 15-20 (2000).
[24] G. K. H. Madsen, P. Blaha, K. Schwarz y E. Sjöstedt. Efficient linearization of the augmented
plane-wave method. Phys. Rev. B 64, 195134 (2001).
[25] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka y J. Luitz. WIEN2k, an Augmented Plane Wave
Plus Local Orbitals Program for Calculating Crystal Properties (Technical Universität Wien, Austria,
1999).
[26] J. J. Melo Quintero, C. E. Rodriguez Torres y L. A. Errico. Ab initio calculation of structural,
electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe
2
O
4
. J.
Alloys Compd. 741, 746-755 (2018).
[27] B. Aslibeiki, G. Varvaro, D. Peddis y P. Kameli. Particle size, spin wave and surface effects on
magnetic properties of MgFe
2
O
4
nanoparticles. J. Magn. Magn. Mater. 422, 7-12 (2017).
[28] R. V. Godbole, P. Rao, P. S. Alegaonkar y S. Bhagwat. Influence of fuel to oxidizer ratio on LPG
sensing performance of MgFe
2
O
4
nanoparticles. Mater. Chem. Phys. 161, 135-141 (2015).
[29] W. Meng, F. Li, D. G. Evans y X. Duan. Preparation of magnetic material containing MgFe
2
O
4
spinel ferrite from a Mg-Fe(III) layered double hydroxide intercalated by hexacyanoferrate(III) ions.
Mater. Chem. Phys. 86, 1-4 (2004).
[30] H. Jiang. Band gaps from the Tran-Blaha modified Becke-Johnson approach: a systematic
investigation. J. Chem. Phys. 138, 134115 (2013).
[31] D. Koller, F. Tran y P. Blaha. Merits and limits of the modified Becke-Johnson exchange
potential. Phys. Rev. B 83, 195134 (2011).
[32] A. Janotti y C. van de Walle. LDA+U and hybrid functional calculations for defects in ZnO, SnO
2
,
and TiO
2
. Phys. Status Solidi B 248, 799-804 (2011).
[33] P. Agoston, L. Albe, R. Nieminen y M. Puska. Intrinsic n-type behavior in transparent conducting
oxides: a comparative hybrid-functional study of In
2
O
3
, SnO
2
, and ZnO. Phys. Rev. Lett. 103, 245501
(2009).
[34] Y. Hinuma, H. Hayashi, Y. Kumagai, I. Tanaka y F. Oba. Comparison of approximations in
density functional theory calculations: Energetics and structure of binary oxides. Phys. Rev. B 96,
094102 (2017).
[35] Y. Kang, G. Kang, H. Nahm, S. Cho, Y. Park y S. Han. GW calculations on post- transition-metal
oxides. Phys. Rev. B 89, 165130 (2014).
[36] A. Morales-Garcia, R. Valero y F. Illas. Performance of the G
0
W
0
method in predicting the
electronic gap of TiO
2
nanoparticles. J. Chem. Theory Comput. 13, 3746-3753 (2017).
[37] A. M. Mudarra Navarro, A. V. Gil Rebaza, K. L. Salcedo Rodriguez, J. J. Melo Quintero, C. E.
Rodriguez Torres, M. Weissmann y L. A. Errico. Structural, Electronic, and Magnetic Properties and
Hyperfine Interactions at the Fe Sites of the Spinel TiFe
2
O
4
. Ab initio, XANES, and Mössbauer Study.
J. Phys. Chem. C 123, 21694-21703 (2019).
[38] F. Tran y P. Blaha. Accurate band gaps of semiconductors and insulators with a semilocal
exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).
[39] Y. L. Liu, Z. M. Liu, Y. Yang, H. F. Yang, G. L. Shen y R. Q. Yu. Simple synthesis of MgFe
2
O
4
nanoparticles as gas sensing material. Sensor Actuat B-Chem. 107, 600-604 (2005).
[40] G. Schatz y A.Weidinger. Nuclear Condensed Matter Physics—Nuclear Methods and Applications
(Wiley, Chichester, 1996).
[41] P. Gütlich, E. Bill y A. X. Trautwein. Mössbauer Spectroscopy and Transition Metal Chemistry
(Springer-Verlag, Berlin, Heidelberg, 2011).