REFERENCIAS
[1] A. C. Powers. Diabetes mellitus: diagnóstico, clasificación y fisiopatología en K Dennis, Fauci A,
Hauser S, et al. Harrison Principios de Medicina Interna. (19ed. McGraw-Hill Interamericana Editores,
S.A., 2016).
[2] G. Basta, A. M. Schmidt y R. De Caterina. Advanced glycation end products and vascular
inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc. Res. 63, 582-592
(2004).
[3] S. Kelm y R. Schauer. Sialic acids in molecular and cellular interaction. Int. Rev. Cytol. 175, 137-
240 (1997).
[4] N. Lebensohn, A. Re, L. Carrera, L. Barberena, M. D´Arrigo y P. Foresto. Ácido siálico sérico,
carga aniónica y agregación eritrocitaria en pacientes diabéticos e hipertensos. Medicina 3, 331-334
(2009).
[5] Y. I. Cho, M. P. Mooney y D. J. Cho. Hemorheological disorders in diabetes mellitus. J Diabetes
Sci Technol. 2, 1130-1138 (2008).
[6] A. Alet, M. Chiesa, L. Racca, M. D’Arrigo, P. Foresto, J. Valverde y R. Rasia. Hemorreología
comparativa. Estudios en diabéticos e hipertensos. Acta Bioq Clin Lat 35, 63-68 (2001).
[7] C. Pinnock, T. Lin y T. Smith. Fundamentals of Anesthesia (3 ed. Cambridge University Press,
2009).
[8] T. Lupton y O. Pratt. Fármacos endovenosos utilizados para indução anestésica. Sociedade
Brasileira de Anestesiologia, 1-10 (2013).
[9] R. L. Videira y J. R. Cruz. Remifentanil in the Clinical Practice. Rev Bras Anestesiol. 54, 114-128
(2004).
[10] A. I. Alet, S. S. Basso, H. V. Castellini, M. Delannoy, N. Alet, M. D’Arrigo y B. D. Riquelme.
Hemorheological in vitro action of propofol on erythrocytes from healthy donors and diabetic patients.
Clin Hemorheol Microcirc. 64, 157-165 (2016).
[11] A. Alet, N. Alet, M. Delannoy, A. Fontana y B. Riquelme. In vitro study of rheological effects of
propofol on human erythrocyte membrane. Series on Biomechanics 27, 39-44 (2012).
[12] M. Batista da Silva, A. Alet, N. Alet, H. Castellini, M. D’Arrigo y B. Riquelme. Alteration of red
blood cells viscoelastic properties by in vitro action of Propofol. Series on Biomechanics 31, 25-29
(2017).
[13] O. Baskurt, M. Hardeman, M. Rampling y H. Meiselman. Handbook of Hemorheology and
Hemodynamics (1 ed. Amsterdam: IOS Press, 2007).
[14] J. E. Raftos, A. Edgley, R. M. Bookchin, Z. Etzion, V. L. Lew y T. Tiffert. Normal Ca2+ extrusion
by the Ca2+ pump of intact red blood cells exposed to high glucose concentrations. Am J Physiol Cell
Physiol. 280, C1449-C1454 (2001).
[15] R. Nagai, E. K. Deemer, J. W. Brock, S. R. Thorpe y J. W. Baynes. Effect of glucose
concentration on formation of AGEs in erythrocytes in vitro. Ann N Y Acad Sci. 1043, 146-150
(2005).
[16] H. Resmi, H. Akhunlar, A. Temiz Artmann y G. Güner. In vitro effects of high glucose
concentrations on membrane protein oxidation, G-actin and deformability of human erythrocytes. Cell
Biochem Funct. 23, 163-168 (2005).
[17] G. S. D. Lemos, L. F. Márquez-Bernardes, L. R. Arvelos, L. F. Paraíso y N. Penha-Silva.
Influence of glucose concentration on the membrane stability of human erythrocytes. Cell Biochem
Biophys 61, 531-537 (2011).