[32] A. M. Schmidt, D. S. Azambuja y E. M. A. Martini. Se-
miconductive properties of titanium anodic oxide films
in McIlvaine buffer solution. Corros. Sci. 48, 2901-2912
(2006).
[33] D. Devilliers y E. Mahé. Modified titanium electrodes:
Application to Ti/TiO2/PbO2 dimensionally stable anodes.
Electrochim. Acta 55, 8207-8214 (2010).
[34] A. J. Bard y L. R. Faulkner. Electrochemical Methods. Fun-
damentals and Applications 2.
a
ed., 751 (John Wiley &
Sons, New York, 2001).
[35] L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz y H. J.
Scheel. Electrochemical and photoelectrochemical investi-
gation of single-crystal anatase. J. Am. Chem. Soc. 118,
6716-6723 (1996).
[36] J. R. Bolton. Solar Fuels. Science 202, 705-711 (1978).
[37] A. J. Bard y M. S. Wrighton. Thermodynamic Potential for
the Anodic Dissolution of n-Type Semiconductors: A Cru-
cial Factor Controlling Durability and Efficiency in Pho-
toelectrochemical Cells and an Important Criterion in the
Selection of New Electrode/Electrolyte Systems. J. Elec-
trochem. Soc. 124, 1706 (1977).
[38] H. Gerischer. On the stability of semiconductor electrodes
against photodecomposition. J. Electroanal. Chem. Interf.
Electrochem. 82, 133-143 (1977).
[39] P. Bhubaneswari, S. Iniyan y G. Ranko. A review of solar
photovoltaic technologies. Renew. Sustain. Energy Rev. 15,
1625-1636 (2011).
[40] V. V. Tyagi, N. A. A. Rahim, N. A. Rahim y J. Selvaraj. Pro-
gress in solar PV technology: Research and achievement.
Renew. Sustain. Energy Rev. 20, 443-461 (2013).
[41] M. Grätzel. The Advent of Mesoscopic Injection Solar
Cells. Prog. Photovoltaics 14, 429-442 (2006).
[42] A. Fujishima y X. Zhang. Titanium dioxide photocataly-
sis: present situation and future approaches. C R Chim. 9,
750-760 (2006).
[43] L. Kavan. Electrochemistry of Titanium Dioxide: Some As-
pects and Highlights. Chem. Rec. 12, 131-142 (2012).
[44] X. Chen. Titanium Dioxide Nanomaterials and Their
Energy Applications. Chinese J. Catal. 30, 839-851 (2009).
[45] Y. Hwu, Y. D. Yao, N. F. Cheng, C. Tung y H. M. Lin. X-
Ray absorption of nanocrystal TiO
2
. Nanostructured Mate-
rials 9, 355-358 (1997).
[46] R. Brydson, B. G. Williams, W. Engel, H. Sauer, E. Zeitler
y J. M. Thomas. Electron energy-loss spectroscopy (EELS)
and the electronic structure of titanium dioxide. Solid State
Commun. 64, 609-612 (1987).
[47] L. X. Chen, T. Rajh, W. Jäger, J. Nedeljkovic y M. C. Thur-
nauer. X-ray absorption reveals surface structure of tita-
nium dioxide nanoparticles. J. Synchrotron Rad. 6, 445-447
(1999).
[48] M. Anpo, T. Shima, S. Kodama e Y. Kubokawa. Photo-
catalytic hydrogenation of propyne with water on small-
particle titania: size quantization effects and reaction inter-
mediates. J. Phys. Chem. 91, 4305-4310 (1987).
[49] L. Kavan, T. Stoto, M. Graetzel, D. Fitzmaurice y V. Shklo-
ver. Quantum size effects in nanocrystalline semiconduc-
ting titania layers prepared by anodic oxidative hydroly-
sis of titanium trichloride. J. Phys. Chem. 97, 9493-9498
(1993).
[50] A. Henglein. Small-particle research: physicochemical pro-
perties of extremely small colloidal metal and semiconduc-
tor particles. Chem. Rev. 89, 1861-1873 (1989).
[51] N. Serpone, D. Lawless, R. Khairutdinov y E. Pelizzet-
ti. Subnanosecond Relaxation Dynamics in TiO
2
Colloidal
Sols (Particle Sizes Rp = 1.0-13.4 nm). Relevance to Hete-
rogeneous Photocatalysis. J. Phys. Chem. 99, 16655-16661
(1995).
[52] Y. Li, T. J. White y S. H. Lim. Low-temperature synthesis
and microstructural control of titania nanoparticles. J. Solid
State Chem. 177, 1372-1381 (2004).
[53] K. M. Reddy, C. V. G. Reddy y S. V. Manorama. Prepara-
tion, characterization, and spectral studies on nanocrystalli-
ne anatase TiO
2
. J. Solid State Chem. 158, 180-186 (2001).
[54] L. Braginsky y V. Shklover. Light absorption in TiO
2
nano-
particles. Eur. Phys. J. D 9, 627-630 (1999).
[55] M. Grätzel. Perspectives for dye-sensitized nanocrystalline
solar cells. Prog. Photovoltaics 8, 171-185 (2000).
[56] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles e I. J.
Riess. Nature of Photovoltaic Action in Dye-Sensitized So-
lar Cells. J. Phys. Chem. B 104, 2053-2059 (2000).
[57] M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeerud-
din, P. Liska y M. Grätzel. Organized Mesoporous TiO
2
Films Exhibiting Greatly Enhanced Performance in Dye-
Sensitized Solar Cells. Nano Lett. 5, 1789-1792 (2005).
[58] Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamo-
to, T. Sekino, K. Niihara y S. Yanagida. Dye-sensitized
TiO2nanotube solar cells: fabrication and electronic cha-
racterization. Phys. Chem. Chem. Phys. 7, 4157-4163
(2005).
[59] T. Lindgren, J. M. Mwabora, E. Avendano, J. Jonsson, A.
Hoel, C. G. Granqvist y S. E. Lindquist. Photoelectroche-
mical and Optical Properties of Nitrogen Doped Titanium
Dioxide Films Prepared by Reactive DC Magnetron Sput-
tering. J. Phys. Chem. B 107, 5709-5716 (2003).
[60] D. Tafalla y P. J. Salvador. Analysis of the photocurrent
transient behaviour associated with flatband potential shifts
during water splitting at n-TiO2 electrodes. J. Electroanal.
Chem. Interf. Electrochem. 220, 285-295 (1989).
[61] W. A. Smith, I. D. Sharp, N. C. Strandwitz y J. Bisquert.
Interfacial band-edge energetics for solar fuels production.
Energy Environ. Sci. 8, 2851-2862 (2015).
[62] J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharpae
y S. Ardo. Experimental demonstrations of spontaneous,
solar-driven photoelectrochemical water splitting. Energy
Environ. Sci 8, 2811-2824 (2015).
[63] R. E. Blankenship y et al. Comparing Photosynthetic and
Photovoltaic Efficiencies and Recognizing the Potential for
Improvement. Science 332, 805-809 (2011).
[64] M. A. Green, K. Emery, Y. Hishikawa y W. Warta. Solar
cell efficiency tables (version 36). Prog. Photovoltaics 18,
346-352 (2010).
[65] M. Topic, K. Brecl y J. Sites. Performance assessment
of PV modules relationship between STC rating and field
performance. en Proc. of the 2006 IEEE 4th World Con-
ference on Photovoltaic Energy Conference 1–2 (2006),
2141-2144.
[66] A. G. Mantzila y M. I. Prodromidis. Development and
study of anodic Ti/TiO
2
electrodes and their potential use
as impedimetric immunosensors. Electrochim. Acta 51,
3537-3542 (2006).
[67] X. Chen y S. Mao. Titanium Dioxide Nanomaterials:
Synthesis, Properties, Modifications, and Applications.
Chem. Rev. 107, 2891-2959 (2007).
Filippin et al. / Anales AFA Vol. 32 Nro. 1 (Abril 2021 - Julio 2021) 22-31 30