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Estudiamos el comportamiento del hidrógeno (H) en las fases puras α , β Zr y β Nb, empleando los códigos de primeros
principios Siesta y Vasp, basados en la teoría del funcional de la densidad (DFT). Calculamos la energía de solución
del hidrógeno, la energía de unión de los complejos H-H y H-Nb, como también la energía de mezcla del sistema
Zr-Nb. Además, propusimos un modelo simple para el estudio de la difusión del H (DH ) mediado por un mecanismo
intersticial en la fase hcp del Zr. Encontramos que el hidrógeno intersticial difunde isotrópicamente según DH = 1.1×
10−7 exp(−42KJ.mol−1/RT ) (m2/s). Nuestros resultados están en buen acuerdo con los datos experimentales y otras
técnicas numéricas de Montecarlo cinético (KMC). Calculamos también, las energías de formación de los tres hidruros
más estables en la fase hcp Zr.
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We study the behavior of hydrogen (H) in the α and β phases of Zr and in the β phase of Nb, using the Siesta and
Vasp first principles codes based on the density functional theory (DFT). We calculate the hydrogen solution energy,
the binding energy of the H-H and H-Nb complexes, as well as, the mixing energy of the Zr-Nb system. Furthermore,
we have proposed a simple model for the study of the hydrogen diffusion (DH ) mediated by interstitial mechanism in
hcp Zr. We find that interstitial hydrogen diffuses isotropically according to DH = 1.1×10−7 exp(−42KJ.mol−1/RT )
(m2/s). Our results are in good agreement with experimental data and other Kinetic Monte Carlo (KMC) calculations.
Finally, the formation energies of the three most stable hydrides in the hcp Zr phase were also calculated.
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I. INTRODUCCIÓN
In the context of the Hydride Delayed Cracking pheno-

mena (DHC), Zirconium based alloys are currently used in
reactors due to their low neutron absorption and their good
response to high temperature corrosion. Since hydrogen can
be present in the alloys as a remnant impurity of the manu-
facturing process, and can also enter during the service life
of the material, it is very important to evaluate the response
of the alloys to hydrogen.

The microstructure, solubility and diffusion coefficient of
H in the alloy are variables that allow us understand the
DHC phenomena. For example, the Zr-2.5Nb alloy is bi-
phasic with grains of phase α (hcp, with 0.6% Nb) surroun-
ded by plates of βZr phase (bcc, with 20% Nb).

With thermal treatments, the original plates of β Zr lose
their continuity and interrupts the fast paths for the hydro-
gen diffusion in the axial direction of the tube and, at the
same time, their percentage of Nb is altered evolving to the
stable phase β Nb (bcc, with 90 - 100%Nb).

From this experimental evidence, the following questions
arise:

1. Since β Nb must have a hydrogen solubility lower than
that of pure Nb, then: It is possible to calculate the
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solubility of H in pure Nb and of the Zr-Nb alloys,
with different percentages of Nb?

2. Is the loss of continuity of the original sheets effecti-
vely responsible for the observed decrease in the dif-
fusion coefficient of H as time passes at a given tem-
perature?

3. Is the diffusion and / or solubility of hydrogen in the
alloy affected by the Nb content?

This is a work prior to that carried out in Ref. [1], in
which the authors have successfully answered questions 2
and 3 posed by our experiments. Here we focused on the
study of the hydrogen’s diffusivity on α Zr.

Concerning atomic diffusion, several efficient methods
have been developed in recent years for finding activated
states or, mathematically, saddle points from which diffu-
sion can be studied. Here we employ the Monomer one,
developed previously in our laboratory [2] and The Dimer
method [3] as implemented in Vasp [4]. The Monomer, in
coupled to Siesta’s code [5] to be interfaced as a subroutine
[6].

The Monomer computes the least local curvature of the
potential energy surface using only the forces furnished by
Siesta. The force component along the corresponding ei-
genvector is then reversed (pointing ‘up hill’), thus defining
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a pseudo force that drives the system towards saddles. Both,
local curvature and configuration displacement stages are
performed within independent conjugate gradients loops.
The method is akin to the Dimer one from the literature [3],
but roughly employs half the number of force evaluations.

These methods are very efficient at obtaining the migra-
tion barriers from which we study the atomic diffusion in
metals. In this way, Ishioka and Koiwa [7] have studied the
interstitial diffusion in hcp metals, involving octahedral and
tetrahedral sites. They have proposed an on-lattice random
walk model to derive the diffusivities of impurity atoms on
a crystal lattice containing multiple sublattices, such as the
octahedral and tetrahedral sites in hcp crystals.

Here we focused on the study of the hydrogen’s behavior
in Zr-Nb. In this sense we study some relevant diffusion
parameters, namely: (i) the hydrogen solubility, (ii) the hy-
drogen binding energies of the H-H and H-Nb complexes,
(iii) the mixing solution energy of Nb-Zr and (iv) the hy-
drogen diffusion coefficients in hcp Zr. With this purpose,
we perform ab-initio calculations with Siesta [5] and Vasp
[4], in order to obtain the hydrogen migration barriers in the
bulk of α Zr using the model developed in Ref. [7]. Classi-
cal calculations were also performed in order to check some
structure consistence.

The present paper is structured as follows: Section II des-
cribes our calculation methodology with the DFT based co-
des as Siesta and Vasp, and from classical codes. Sections
III show the way as the lattice parameter is calculated from
the fit of a third-order Birch-Murnagahn equation of state,
EOS, [8]. Section IV, is devoted to summarize the energe-
tic of Hydrogen in the Zr-Nb system. Section V describes
the way as the H-diffusion coefficients were calculated in
α Zr together with our numerical results. In brief, Section
VI, describes the structure of the three stable zirconium-
hydrides in αZr. The last section presents some conclu-
sions.

II. CALCULATION METHODOLOGY
Ab initio calculations were performed as implemented in

Siesta and Vasp. Siesta, is a freely available code [5], which
is based on pseudopotentials and numerical, atomic-like,
basis functions. The pseudopotential and basis for Zr are
according to Ref. [6]. Pseudopotential for H was downloa-
ded from Siesta’s home page, and the corresponding base
was automatically generated using the code itself.

Present Siesta calculations were carried out within the ge-
neralized gradient approximation (GGA) for exchange and
correlation, according to the PBE parameterization descri-
bed in Ref. [9]. A spatial mesh cutoff of 460.0 Ry we-
re used, with a smearing temperature of 0.15 eV, within a
Fermi–Dirac scheme. Reciprocal space is partitioned in a
5× 5× 5 Monkhorst–Pack grid. All calculations were ato-
mically relaxed, though the cell boundary remains fixed.
For hydrogen, we used a so called TZDP basis with a split
norm parameter of 0.5, which is the accurate one that most
efficiently relaxes the bulk containing H.

Vasp uses a projector augmented-wave formalism to des-
cribe the interactions between atoms [10]. An energy cu-
toff of 460 eV and fine Γ-centered k-point meshes automa-
tically generated with the Monkhorst-Pack scheme [11] of

5× 5× 5-k points mesh ensured electronic convergence of
the calculations. For the term of exchange and correlation
we use the PBE-GGA approximation, with the Methfessel-
Paxton broadening scheme with a 0.3 eV width. Concerning
optimum structures, relaxation was done until the residual
forces were below 0.02 eV/Å.

In both, Siesta and Vasp, we have used two supercell sizes
of 48 and 54 atoms, respectuvely for αZr and βNb. The su-
percell of αZr with 48 atoms is constructed by reproducing
the conventional cell, of 4 atoms, along the lattice vectors
of the hexagonal primitive cell a, b and c, in 2×3×2.

In addition, we have performed calculations with the mo-
lecular statics technique (MS), implemented in an in-house
code, provided with suitable EAM interatomic potentials
for Zr [12]. We use a simulation cell of 15× 10× 10 and
20×20×20 respectively containing 6000 Zr or Nb atoms,
with periodic boundary conditions.

These methods are very efficient at obtaining the equili-
brium positions of the atoms by relaxing the structure via
the conjugate gradients technique. Impurity and defect re-
laxation, includes interstitial H atoms in αZr, βNb, as well
as, in the Zr-Nb alloy structure. The needed migration ba-
rriers of several jumps were calculated coupling both EAM
and Siesta techniques to the Monomer method [2, 6], while
we used the DIMER as implemented in Vasp [3].

Finally, our calculations were carried out at constant vo-
lume, and therefore the enthalpic barrier ∆H = ∆U + p∆V
is equal to the internal energy barrier ∆U .

The empirical formula (EF)
The EF is an expression that represents the simplest pro-

portion in which the atoms are present in the alloy. In the ca-
se of the Zr-2.5Nb alloy, we start from a hypothetical sam-
ple with 100 gr of Zr-2.5Nb. From the% of Nb we defined
that in 100 gr of the sample there are 2.5 gr of Nb while the
rest, (100-2.5) = 97.5 gr, are of Zr. The moles of Zr and Nb
that are present in those 100 gr of Zr-2.5Nb, are obtained
through the ratio between the grams of each species in the
sample by their respective molecular weights, PZr

M = 91.224
and PNb

M = 92.90637, as,

97.5gr Zr/91.224 = 1.0057moles of Zr, (1)
2.5gr Nb/92.90637 = 0.0269moles of Nb. (2)

In Eqs. (1) and (2) the ratio between species that contains
the least number of moles gives the empirical formula Zr37 :
Nb1 for the alloy. This assumes that Nb atoms are located
at periodic positions and not randomly; Also, this does not
consider the different compositions of the alpha and beta
phases.

From this result, we were considered two sizes of super-
cells, one of 36 atoms of Zr and another one with 48 atoms
of Zr.

III. STRUCTURE OPTIMIZATION
For β Nb and β Zr, in order to better describe bulk zirco-

nium properties, we determine a cut-off for the needed size
of k-point mesh. On a 1× 1× 1 cell consisting of two Nb
or Zr atoms, several calculations were done using k-point
meshes with sizes of 12×12×8, 16×16×10, 20×20×14,
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24×24×16, 28×28×18 and 32×32×20 with the use of
95, 180, 352, 549, 800 and 1122 irreducible k-points, res-
pectively.

Using a general convergence cut-off of 5 meV/atom, it
was shown that the choice of 20 × 20 × 14 k-point mesh
would be sufficient to represent the both, Nb and Zr 1×
1× 1 supercells while keeping the computational effort at
the minimum level. In subsequent calculations, choice of k-
point mesh would be made based on the ratio between the
size of the new supercell and that of the 1×1×1 supercell.

With the chosen k-point mesh, equation of state calcu-
lations were done in determining the computational lattice
parameters of bulk βZr and βNb as follows: We perform an
automated volume scan by means of a shell script loop.sh,
with lattice parameters above and below the experimental
value. Then, the procedure was to get the energy as a fun-
ction of volume using by regression fitting DFT results to
third-order Birch-Murnagahn equation of state, EOS, [8].

E(V ) = E0 +
9V0B0

16

{[
(
V0

V
)2/3 −1

]3

B′
0

+

[
(
V0

V
)2/3 −1

]2 [
6−4(

V0

V
)2/3
]}

(3)

In Eq. (3), V0 was found from the regression fitting in Fig.
1, which corresponds to the cell volume that result in the
lowest possible total energy of the system. One last calcu-
lation to calculate the Zr lattice parameter was to optimize
the ionic structure of a zirconium cell with a fixed volume
equal to the value of V0. In addition, by getting the energy
as a function of volume using third-order Birch-Murnagahn
EOS, information about bulk modulus was also found.

The optimization procedure is also used with hcp structu-
res. The fitting of the best a and c or c/a for hcp crystals is
more difficult than in the previous case of the cubic lattices.
This is because for hcp alloys, one should define a global
minimum of the total energy of a crystal as a function of
both, the volume of the unit cell and the structural relation
c/a.

We have obtained a lattice parameter of aNb = 3.304 Å
and aNb = 3.301 Å for a supercell containing 16 and 54 Nb
atoms, respectively.

Also, the above procedure, is performed in order to ob-
tain the optimal lattice parameter of the structure including
interstitial (H) and substitutional (Nb) defects. For αZr and
αZr containing impurities, a test value of structural relation
c/a was fixed. The standard optimization procedure, like in
the case of cubic lattices, was used to define the optimal vo-
lume of the unit cell corresponding to the minimum of the
total energy as a function of the unit cell volume, E(i)

min(c/a)i
, where i=1,...,N, the number of test values for the structural
relation c/a.

The obtained empiric data as the dependence Emin(c/a),
were approximated by the functional dependence. The mi-
nimum of this dependence corresponds to the optimal value
of the structural relation (c/a)opt . Next, for the determined
(c/a)opt , the standard optimization procedure was made to
determine a global minimum of the total energy and the op-

FIG. 1: Optimized lattice parameter of a βNb supercell containing
16 atoms.

timal unit cell volume, respectively.
Using the standard definition for the volume of the HCP

unit cell Vhcp = (c/a)opta3
hcp sin( 2π

3 ) the optimal lattice
constant ahcp was determined for each case. Table 1, sum-
marizes present results of the optimized lattice parameters
from Zr and Nb.

Table 1 reports the calculated lattice parameters of α , β

Zr and β Nb, namely: The lattice parameters, a and c/a,
the Bulk modulus, B, the Cohsive energy, Ec, the vacancy
formation energy, EV

f , and the vacancy migration energy,
EV

m , in comparison with experimental and theoretical values
reported in the literature.

Fig. 1, show our results of the optimized lattice parameter
from the fit of Eq. (3) of a supercell containing 16 atoms of
βNb. In this case the Bulk modulus was obtained, as well
as, the resulting pressure of the supercell after relaxation.
The same procedure was followed from 2 up to 54 atoms of
Nb and Zr atoms with bcc structure.
TABLE 1: Lattice parameter (in Å) and the vacancy formation
and migration energy (in eV).

αZr Vasp/Siesta Vasp Vasp EAM Exp.
N=48 N=36 Ref. [13] N=6000

a 3.237/3.239 3.240 3.237 3.2171 3.232 [14]
c 5.176/5.185 5.186 5.183 - 5.141 [15]

c/a 1.599/1.601 1.601 1.601 1.6046 1.5929 [14]
E f

v 1.89/1.96 2.202 1.79 1.750 [15]
Ec 6.25 6.28 6.34 6.25 6.25 [16]
Ev

f 1.79 2.00 2.02 1.74 [16]
Ev

m in ⟨c⟩ (eV) 0.61 0.61 0.61 0.60 [17]
Ev

m in ⟨a⟩ (eV) 0.66 0.65 0.66 0.62 [18]
βNb Vasp/Siesta Vasp Vasp EAM Exp.

N=108 N=54 Ref. [19] Ref. [20]
a (Å) 3.303/3.308 3.304 3.309 3.3000 3.303 [21]

Ev
f 2.680/2.704 2.72 2.700

Ec 7.610/7.730 7.64 - 7.57 7.57 [16]
Ev

f 2.76 2.81 2.88 [22] 2.75 2.75 [23]
Ev

m 0.65 0.70 0.55 [24] 0.67

The comparison in Table 1 shows that the predicted geo-
metries of the GGA (PBE) slightly overerestimated the ex-
perimental lattice parameters. Although the regression fit-
ting of the EOS in Eq. (3) overestimates V0 by about 1.0%,
this discrepancy between the DFT results and the reported
experimental data was acceptable for this study. Then, the
current set up of zirconium supercells with the chosen k-
points mesh is approximately accurate in representing the
actual zirconium and niobium metal structure.
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The dependence of the lattice parameter, aZr, for β Zr-Nb
alloys versus niobium concentration was previously evalua-
ted in Ref. [25]. The authors have shown that with an in-
crease in the niobium concentration the lattice constant de-
creases according to the linear law. This result is consistent
with the well known approximate empirical rule, called in
metallurgy Vegard’s law. Also, at 0% of Nb the lattice pa-
rameter of βZr is abcc

Zr = 3.5634 Å while for pure βNb is
abcc

Nb = 3.3004 Å. Present calculations give abcc
Zr = 3.5629 Å.

IV. THE ENERGETIC OF THE Zr-Nb SYSTEM

IV.1 Mixing solution energy

The mixing solution energy, Ω
α,β
mix , of a substitutional B

atom in a matrix of A atoms with α or β structure, is obtai-
ned as [19],

∆E[AN−MBM] = E[AN−MBM] (4)

− (N −M)EA
0 [A]−

M
N

EB
0 [B],

with E[AN−MBM] the energy of the supercell with (N-
M) A atoms and M B-atoms, EA

0 [A] the reference energy
of the matrix calculated with the same supercell and EB

0 [B]
the energy per atom of B in its state of reference (bcc for
βNb and hcp for αZr). This excess energy is the solution
energy weighted by the solute concentration χB = M

N as in
Ref. [19],

∆E[AN−MBM] = χBΩ
α,β
mix , (5)

High and positive values of Eq. (5), show a strong tendency
to Zr and Nb atoms not to mix in the Zr-Nb alloy. Here, for
the diluted limit, we have used a supercell of 108 and 144
atoms respectively for bcc Nb and hcp Zr.

As χB = M
N and defining x = χZr = 1− χNb we obtain

ΩβNb(x → 0) = 0.322 eV for a substitutional Zr diluited in
βNb, and ΩαZr(x → 0) = 0.632 eV for a substitutional Nb
atom in αZr. The last results are in agreement with previous
DFT ones of 0.61 eV [26] and 0.68 eV [27].

Our results show that Nb has a low solubility in αZr gi-
ven the high value of 0.63 eV, while Zr has high solubility in
βNb. For the supercells with 54 and 48 atoms of βNb and
αZr, ΩβNb(x → 0) = 0.34 eV and ΩαZr(x → 0) = 0.641 eV,
respectively.

IV.2 Hydrogen solution energies in αZr and βNb

The hydrogen solution energy, ES, at stable sites were
calculated according to the following expression [28],

EH
S = E(N,H)−E(N)− 1

2
E(H2)−EZPE . (6)

In Eq. (6) E(N,H) is the energy of the supercell contai-
ning N atoms plus an absorbed hydrogen at a determined in-
terstitial site, E(N) the energy of supercell without defects,
1
2 E(H2) the energy of the hydrogen in the gaseous phase,
and EZPE , the zero point energy (ZPE) that corresponds to
quantum corrections. The value of the solution energy in a
given site gives us information about the stability of such a
site.

FIG. 2: The fitted hydrogen molecule, H2, bond length.

In Eq. (6), the third term corresponds to half of the total
energy of the hydrogen molecule, is calculated using a cell
of sides 10× 10× 10 Å3 containing only the dimer, H2,
in the center of the cell for a single k-point. While the last
term, correspond to the zero point energy due to quantum
corrections.

Fig. 2 shows the obtained equilibrium bond length of
0.750 Å for the hydrogen molecule, and a dimer energy
of 6.765 eV, from which we calculate a binding energy of
4.54 eV for the hydrogen molecule, in agreement with expe-
rimental values of 0.741 Å, and 4.75 eV [29], respectively.

The calculated H2 vibration frequency are 4401 cm−1,
that agrees with the experimental value of 4395 cm−1 [30].
Finally, present result of the ZPE 0.27 eV, reproduces the
experimental value 0.274 eV [29]. Table 2, summarizes our
results of the H solution energy in the αZr and βNb respec-
tively for a supercell of 48 and 54 atoms. High and negative

TABLE 2: Hydrogen solution energy, EH
S (in eV) calculated with

Siesta/Vasp.

System EH
S H-Site Refs.

αZr48H -0.481 T -0.609 [30]
αZr48H -0.407 O -0.549 [30]
βNb54H -0.323 T -0.340 [31]
βNb54H -0.052 O -0.030 [31]
αZr48H2 -0.963 T -
αZr48H2 -0.637 O -

values of the solution energies mean stable sites, while po-
sitive values can infer that the site will be unoccupied or,
the site is not favorable for hydrogen solubilization.

The results in Table 2 reveal that H is highly soluble on
both the T and O sites of α Zr phase, with the following
energy relationship EH

S (T ) > EH
S (O). Concerning β Nb,

H preferentially dissolves at the T site, whose solubility is
much higher than at the O site. In regarding the energy of
solution for the 2H in the α Zr phase, we observe that the T
site is the preferential site for 2H whose energy of solution
is more than double that of the isolated H in the same phase,
showing that there is a slight interaction between the 2H.
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IV.3 Binding energies

The hydrogen binding energy in a crystal containing N
atoms of Zr plus k atoms of Nb on substitutional sites, was
calculated with the following expression,

Eb = {E(ZrN−kNbkHn)+(n+ k−1)×E(ZrN)}
− {k×E(ZrN−1Nb1)+n×E(ZrNH1)}. (7)

In Eq. (7) E(ZrN−kNbkHn) and E(ZrN−1Nb1) are respec-
tively the energy of the supercell of Zr containing k subs-
titutional atom of Nb, plus n-atoms of interstitial H, and
the energy o the supercell with (N − 1) atoms of Zr plus
a substitutional Nb. E(ZrNH1) is the energy of the crystal
containing N-atoms of Zr with a single interstitial H at its
minimum configuration, while E(ZrN) is the energy of the
perfect Zr lattice. Negative/positive values of Eb indicate
repulsion/attraction between the H and the solute atom. Ta-
ble 3 summarizes present results with Siesta and Vasp.

TABLE 3: Binding energies (in eV) with Siesta/Vasp calculations
for a supercell with N=48 atoms of Zr, n=1 or 2 H atoms and
k=1 atom of substitutional Nb. Ta and Tc correspond to tetrahedral
sites for H in the basal and axial axes, respectively.

αZr ETc
b ETa

b EO
b

H −H 0.47/0.31 0.01/-0.02 0.12/0.12
Nb−H 0.11/0.29 0.08/0.06 0.05/0.04

Nb−2H -0.01/-0.02 0.31/0.44 0.01/-0.02

Our calculations predict T-sites as the preferential sites
of hydrogen dissolved in αZr, with ET −EO = 0.06 eV the
energy difference between T- and O- hydrogen sites. In pre-
sence of Nb, this energy difference was maintained.

Results in Table 3, show that Eb were mostly positive,
indicating that the interactions are attractive, that is, ener-
getically favorable for the formation of the complexes, ac-
cording to Domain et al. [32].

The exception is the binding energy of -0.01 / -0.02 eV,
weak and negative, showing that the two T- hydrogen do
not interact with Nb in the axial plane. The other negative
energy of -0.02 eV reveal a slight repulsion between the two
O-hydrogen first neighbors of Nb, in the basal plane.

From values in Table 3, we assume that the presence of
Nb in αZr, with a positive binding energy with H, can be
interpreted as a reduction in the hydrogen diffusivity by the
hydrogen trapped locally by the Nb atom.

V. HYDROGEN DIFFUSION COEFFICIENT

Hydrogen diffusion in hcp Zr involving T and O sites
driven by interstitial mechanism were studied with a mo-
del proposed by Ishioka and Koiwa [33], using an on-lattice
random walk model for hcp crystals. The diffusivity along
< c > and < a > directions are expressed as,

Dc =
ωTO(3ωOOωTO +2ωOOωT T +3ωT T ωOT )

4(2ωT T +3ωTO)(ωTO +2ωOT )
c2, (8)

Da =
ωTOωOT

ωTO +2ωOT
a2. (9)

In Eqs. (8) and (9), ωi j are the mean jump frequencies ω

of the four possible hydrogen transitions, namely: T → T ,
O → O, T → O and O → T .

In order to compute the mean jump frequencies ωα in
Eqs. (8) and (9), we use the Vineyard formalism [34], that
corresponds to the classical limit, where the vibrational pre-
factors, ν⋆

0 , do not depend on the temperature, that is

ωα = ν
⋆
α exp(−Em

α /kBT ). (10)

In (10), Em
α are the vacancy migration energies at T = 0 K,

while

ν
⋆
α =

(
3N−3

∏
i=1

ν
I
i

)
α

/

(
3N−4

∏
i=1

ν
S
i

)
α

=ν0 exp
(

Sm
α

kB

)
, (11)

with ν I
i and νS

i the frequencies of the normal vibrational
modes at the initial and saddle points, respectively, and ν0
the Deby’s frequency. Migration barriers were calculated
with the Monomer [2] coupled to Siesta [6], and the DI-
MER Method [3] as implemented in Vasp. Present results
of the migration barriers (in eV) are summarized in Table 4.

TABLE 4: Hydrogen migration energies, Em (in eV), in αZr cal-
culated with Siesta and Vasp for a supercell of N=48 atoms of Zr
and one interstitial H.

Jump Siesta Vasp Ref. [7]
T −T 0.14 0.12 0.129
T −O 0.45 0.39 0.406
T −T 0.36 0.32 0.346
O−O 0.42 0.37 0.398

The anisotropy of hydrogen diffusion in αZr has been
widely studied from Monte Carlo Kinetic (KMC) [7, 35],
using individual H jumps between first neighbors (1NN) T
and O sites. These authors have found an expression of the
diffusion coefficient DH = 5.55 × 10−7 exp(0.41eV/RT )
m2s−1, which is higher than the experimental value of DH =
(6.84− 7.82)× 10−7 exp([0.46−0.47] eV/RT )m2s−1 [36]
for T < 1000 K.

On the other hand, Sawatzky et al. [35] have obtained the
diffusion coefficient for hydrogen in annealed and extruded
specimens as DH = 1.17× 10−7 m2s−1 with QD = 33.60
KJ/mol over the temperature range 473 to 973 K from KMC
calculations. While, Zhang et al. [7], are who have obtained
results closer to the experimental ones. Fig. 3 shows our
results of Dc and Da in αZr calculated from Eqs. (8) and
(9) using both, Siesta and Vasp codes.

Experimental data from Ref. [37] and previous numeri-
cal results from KMC calculations in Ref. [35], are also in-
cluded. Experimental results of hydrogen diffusion in αZr-
2.5Nb [38], are shown in blue line.

The mean jump frequencies were calculated from Eqs.
(10) and (11) with the migration barriers listed in Table 4,
verify ω1 > ω3 > ω4 > ω2.

Fig. 3(c) shows the behavior of the mean jump frequen-
cies with the inverse of the temperature.

Fig. 3(a)-(c), show our numerical results of DH and the
mean jump frequencies in α Zr in terms of 1/T (in K−1),
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(a)

(b)
(c)

FIG. 3: Hydrogen diffusion coefficients vs 1/T (K−1). The hydro-
gen diffusion coefficients Dc and Da in black solid and dashed
lines respectively, from present calculations with: (a) Siesta, and
(b) Vasp. In open triangles and stars DH from experimental data
[36] and KMC results [35]. The experimental hydrogen diffusion
coefficient in Zr-2.5Nb [38] (in blue solid line) is also shown. (c)
Mean jump frequencies vs 1/T (K−1). ω1 > ω3 > ω4 > ω2.

compared with experimental data in pure metal and the
alloy Zr-2.5 Nb. Our results with Vasp reproduce very well
the experimental data and the numerical results of KMC.

The anisotropy of the H diffusion in hcp Zr along the ⟨c⟩
and ⟨a⟩ axes, is measurable from the Dc/Da ratio,

Dc

Da
=

3c2

8a2 (
2ωOO

3ωOT
+

2ωT T

2ωT T +3ωTO
). (12)

The dependence on the temperature of the ratio Dc/Da,
defined in Eq. (12) is through the mean jump frequencies ωi.
Fig. 4 shows that the results of the ratio Dc/Da in Ref. [7]
(symbols in orange) agree better with present results with
Vasp (in dashed line) than with Siesta (solid line). Possibly
because Siesta overestimate the values of the migration ba-
rriers.

FIG. 4: Dc/Da vs1/T (in K−1). Symbols in black show our results
with Vasp (open stars) and Siesta (full stars). In orange the results
in Ref. [7].

VI. ZIRCONIUM HYDRIDES
The three most stables zirconium-hydrides in Zr based

alloys are δ , γ , ε . The δ hydride is the most frequent in
Zr-2.5Nb which appears at slow speed of cooling low than
2◦C/ min. The composition of the δ -hydride is ZrHx with
1.53 ≤ x ≤ 1.66 (56.7 to 66% at Hydrogen, simulated as
δ −ZrH1.5). This hydride forms plates located at the grain
boundaries or trans-granular interphases.

This particular form is associated with the following rela-
tion of orientation: (0002)α ∥ (111)δ and [1120]α ∥ [110]δ ,
which generates a (1017)α plane that is practically parallel
to the basal plane of Zr [39] and precipitates mostly in the
radial direction, as shown in Fig. 5 [40].

We present our preliminary results in Table 5, of the three
stable hydrides schematized in Fig. 6. Our results reproduce
well the ones obtained by Glasoff [41]. We have followed
the same methodology to familiarize ourselves with this ty-
pe of structures. The equilibrium lattice constants were de-
termined by lattice relaxation, minimizing the total energy
of the system by varying atomic positions with the calcula-
tion parameters defined in Section II.

In Table 5, the values of the lattice parameter of each cell
vary little from one hydride to another. Our results agree
very well with the calculations made by Glazoff [41] and
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FIG. 5: Hydride’s Radial and circumferential orientation in tubes
of Zr-2.5Nb.

FIG. 6: Crystal structure of the 3 stable hydrides in zirconium:
orthorrombic γ−ZrH; cubic δ −ZrH1.5 and tetragonal ε−ZrH2.

with the available experimental data. The hydride formation
enthalpy, Ex

f , is calculated as Glasoff [41].

TABLE 5: Lattice parameters (in Å) and the hydrogen solution
energy (in eV) of the three stables hydrides in αZr with Vasp.

System γ −ZrH δ −ZrH1.5 ε −ZrH2

a 3.232 4.807 3.538
a [13] 3.223 4.482 3.537

aexp [42] 3.243 4.777 3.520
c 5.016 4.807 4.406

c [13] 5.014 4.821 4.458
cexp [42] 4.948 5.777 4.449

c/a 1.55 1.0 1.25
c/a|exp [42] 1.53 1.0 1.26

Ex
f -0.408 -0.564 -0.573

Ex
f [13] -0.32 -0.548 -0.556

VII. CONCLUSIONS
In summary, we have studied the hydrogen diffusion by

ab initio methods in αZr. Also, the energetic of hydrogen in
the Zr-Nb system were also studied. We remark that,

our DFT results of the lattice parameters are in well
agreement with the experimental values.

The calculated formation energies are within the ran-
ge of values of previous references and experimental
values.

The mixing energy in the dilute limit shows that Zr is
energetically favorable to dissolve in the bcc phase of

Nb, and on the contrary, Nb has a low solubility in hcp
Zr.

The presence of Nb in hcp Zr moderately increases
the solubility of H around the impurity, implying in
a slight reduction in diffusivity of the H by trapping H
locally, forming the H-Nb complex.

The hydrogen solution energy shows that tetrahedral
sites are the most stable for H.

The H-diffusion coefficient in hcp Zr, calculated with
Vasp reproduce very well the experimental values and
previous results from KMC.
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