[6] R. Pasianot, R. Perez, V. Ramunni y M. Weissmann. Ab initio approach to the effect of Fe on the diffusion in
hcp Zr II: The energy barriers. J. Nucl. Mater. 392, 100-104 (2009).
[7] Y. Zhang, C. Jiang y X. Bai. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated
kinetic Monte Carlo simulations. Sci. Rep. 7, 41033 (2017).
[8] F. Birch. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 71, 809-824 (1947).
[9] J. P. Perdew, K. Burke y M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.
77, 3865-3868 (1996).
[10] P. E. Blochl, O. Jepsen y O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Phys.
Rev. B 49, 16223-16233 (1994).
[11] H. J. Monkhorst y J. D. Pack. Special points for Brillouinzone integrations. Phys. Rev. B 13, 5188-5192
(1976).
[12] R. Pasianot y A. Monti. A many body potential for α-Zr. Application to defect properties. J. Nucl. Mater. 264,
198-205 (1999).
[13] M. Christensen, W. Wolf, C. Freeman, E. Wimmer, R. B. Adamson, L. Hallstadius, P. E. Cantonwine y E. V.
Mader. H inα-Zr and in zirconium hydrides: solubility, effect on dimensional changes, and the role of defects. J.
Phys. Condens. Matter 27, 025402 (2015).
[14] D. R. Lide. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data
(CRC press, Boca Raton, Florida, 1995).
[15] J. Goldak, L. T. Lloyd y C. S. Barrett. Lattice Parameters, Thermal Expansions, and Gruneisen Coefficients of
Zirconium, 4.2 to 1130°K. Phys. Rev. 144, 478-484 (1966).
[16] C. Kittel. Introduction to Solid State Physics (Wiley, New York, 2005).
[17] H. H. Neely. Damage rate and recovery measurements on zirconium after electron irradiation at low
temperatures. Radiation Effects 3, 189-201 (1970).
[18] G. Hood y R. Schultz. Defect recovery in electronirradiated α-Zr single crystals: A positron annihilation
study. J. Nucl. Mater. 151, 172-180 (1988).
[19] M. Cottura y E. Clouet. Solubility in Zr-Nb alloys from first-principles. Acta Mater. 144, 21-30 (2018).
[20] D.-Y. Lin, S. S.Wang, D. L. Peng, M. Li y X. D. Hui. Annbody potential for a Zr–Nb system based on the
embeddedatom method. J. Phys. Condens. Matter 25, 105404 (2013).
[21] R. Roberge. Lattice parameter of niobium between 4.2 and 300 K. Journal of the Less Common Metals 40,
161-164 (1975).
[22] P. Soderlind, L. H. Yang, J. A. Moriarty y J. M. Wills. First-principles formation energies of monovacancies
in bcc transition metals. Phys. Rev. B 61, 2579-2586 (2000).
[23] M. I. Baskes. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727-
2742 (1992).
[24] H. Ullmaier, P. Ehrhart, P. Jung y H. Schultz. Atomic defects in metals (Springer, Berlin, 1991).
[25] V. O. Kharchenko y D. O. Kharchenko. Ab-initio calculations for the structural properties of Zr-Nb alloys.
Condens. Matter Phys. 16, 13801 (2013).
[26] C. Domain. Ab initio modelling of defect properties with substitutional and interstitials elements in steels and
Zr alloys. J. Nucl. Mater. 351, 1-19 (2006).
[27] X. Xin, W. Lai y B. Liu. Point defect properties in hcp and bcc Zr with trace solute Nb revealed by ab initio
calculations. J. Nucl. Mater. 393, 197-202 (2009).