[3] C. Garcia. Solubilidad de hidrogeno en aleaciones base Zr-Nb para aplicaciones nucleares Tesis de mtria.
(UNSAM, 2019).
[4] A. Sawatzky, G. Ledoux, R. Tough y C. Cann. en Metal–Hydrogen Systems (ed. Vizeroglu, T.) 109-120
(1982).
[5] J. Mieza, G. Vigna y G. Domizzi. Evaluation of variablesaffecting crack propagation by Delayed Hydride
Cracking in Zr–2.5Nb with different heat treatments. J. Nucl. Mater. 411, 150-159 (2011).
[6] G. H. Vineyard. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3,
121-127 (1957).
[7] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon y D. Sanchez-Portal. The SIESTA
method forab initioorder-Nmaterials simulation. J. Phys. Condens. Matter 14, 2745-2779 (2002).
[8] J. Kearns. Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy-2 and Zircaloy-4. J. Nucl. Mater. 43,
330-338 (1972).
[9] Effects of Radiation on Materials: Sixteenth International Symposium (eds. Kumar, A., Gelles, D., Nanstad, R.
y Little, T.) (ASTM International, 1994).
[10] R. Dutton, K. Nuttall, M. P. Puls y L. A. Simpson. Mechanisms of hydrogen induced delayed cracking in
hydride forming materials. Metall. Mater. Trans. A 8, 1553-1562 (1977).
[11] S. Hanlon. The Effect of Testing Direction on DHC Growth Rate Using Zr-2.5Nb Plate Tesis doct. (Carleton
University, Canada, 2013).
[12] W. M. Young y E. W. Elcock. Monte Carlo studies of vacancy migration in binary ordered alloys: I. Proc.
Phys. Soc. 89, 735-746 (1966).
[13] G. Simonelli. Simulacion por computadora de defectos puntuales en Fe, Mo y Cr Tesis doct. (UBA,
Argentina, 1998).
[14] M. Jovanovi´c, R. Eadie, Y. Ma, M. Anderson, S. Sagat y V. Perovi´c. The effect of annealing on hardness,
microstructure and delayed hydride cracking in Zr–2.5Nb pressure tube material. Mater. Charact. 47, 259-268
(2001).
[15] Canadian Standards Association. CSA-N285.15, Technical requirements for in-service evaluation of
zirconium alloys pressure tubes in CANDU reactors (2015).
[16] Kharchenko y Kharchenko. Ab-initio calculations for the structural properties of Zr-Nb alloys. Condens.
Matter Phys. 16, 13801 (2013).
[17] P. Blaha, K. Schwarz, P. Sorantin y S. Trickey. Fullpotential, linearized augmented plane wave programs for
crystalline systems. Comput. Phys. Commun. 59, 399-415 (1990).
[18] G. Grad, J. Pieres, A. F. Guillermet, G. Cuello, J. Granada y R. Mayer. Systematics of lattice parameters and
bonding distances of the omega phase in ZrNb alloys. Phys. B: Condens. Matter 213-214, 433-435 (1995).
[19] G. Benites, A. F. Guillermet, G. Cuello y J. Campo. Structural properties of metastable phases in Zr–Nb
alloys. J. Alloys Compd. 299, 183-188 (2000).
[20] W. Lu, A. Gao, Y. Liu y Z. Dai. Diffusion behaviors of hydrogen isotopes in niobium from first-principles.
Sci. China: Phys. Mech. Astron. 55, 2378-2382 (2012).
[21] G. Schaumann, J. Volki y G. Alefeld. The diffusion coefficients of hydrogen and deuterium in vanadium,
niobium, and tantalum by gorsky-effect measurements. physica status solidi (b) 42, 401-413 (1970).
[22] C. Varvenne, F. Bruneval, M.-C. Marinica y E. Clouet. Point defect modeling in materials: Couplingab initio
and elasticity approaches. Phys. Rev. B 88 (2013).
[23] R. C. Pasianot. On the determination of defect dipoles from atomistic simulations using periodic boundary
conditions. Philos. Mag. Lett. 96, 447-453 (2016).