
Anales AFA - XVI Meeting on Recent Advances of Physics of Fluids and its Applications 66-70

OSCILLATING BUBBLES RISING IN A DOUBLY CONFINED CELL

L. Pavlov*1, M. V. D’Angelo1, M. Cachile1, V. Roig2 y P. Ern2

1Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Buenos Aires, Argentina,
CONICET, Buenos Aires, Argentina.

2Institut de Mécanique des Fluides de Toulouse, Université de Toulouse and CNRS, Toulouse, France.

Recibido: 30/10/21; Aceptado: 14/12/21

The motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass
transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae
cultivation. In this work we performed an experimental investigation of the behavior of air bubbles freely rising at high
Reynolds numbers in a planar thin-gap cell of thickness h = 2.8 mm filled with distilled water. The in-plane width of
the cell W is varied from 2.4 cm to 21 cm. We focus on the influence of lateral confinement on the motion of bubbles in
the regimes with regular path and shape oscillations of large amplitude, that occur for the size range 0.6 cm < d < 1.2
cm. In addition, a rise regime that consists of a vertical rise path with regular shape oscillations, that does not appear in
the laterally unconfined case, is uncovered.
In the presence of lateral walls, the mean rise velocity of the bubble Vb becomes lower than the velocity of a laterally
unconfined bubble of the same size beyond a critical bubble diameter dcV that decreases as the confinement increases
(i.e. as W decreases). The influence of the lateral confinement on the bubble mean shape can be determined from the
change in the mean aspect ratio χ of the ellipse that best fits the bubble contour at each instant. It is observed that
bubbles become closer to circular (χ closer to 1) as the confinement increases. The departure from the values of χ

of the laterally unconfined case occur at a critical diameter dcχ that is lower for greater confinement and also greater
than dcV for each confinement, thus indicating that the effect of the lateral confinement is seen earlier (i.e. on smaller
bubbles) on the velocity than on the aspect ratio.
Assuming that the wall effect is related to the strength of the downward flow generated by the bubble, we introduce
the mean flow velocity in the space let free for the liquid between the walls and the bubble, U f , that can be estimated
by mass conservation as U f = dVb/(W − d). We further introduce the relative velocity between the bubble and the
downward fluid in its vicinity Urel = Vb +U f = Vb/ξ , where ξ = 1−d/W is the confinement ratio of the bubble. We
found that, for a given bubble size in the oscillatory regime, Urel is approximately constant for all the studied values
of W , and matches closely the value in the absence of lateral confinement. This provides an estimation, at leading
order, of the bubble velocity that generalizes the expression proposed by Filella et al. (JFM, 2015) and accounts for the
additional drag experienced by the bubble due to the lateral walls. We then show that, for given d and ξ , the frequency
and amplitudes of the oscillatory motion can be predicted using the characteristic length and velocity scales d and Urel .
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I. INTRODUCTION

The motion of bubbles freely rising in a thin-gap cell at
high Reynolds numbers has interest in several fundamental
and practical problems, for example in applications invol-
ving confined bubble reactors. This thin-space configura-
tion retains the specific properties associated with inertial
flows, while operating limited volumes of liquid [1-5]. In
specific applications, bubbles rising in plane geometries are
also limited by side walls. This work then focuses on in-
vestigating the influence of an additional transverse confi-
nement on the bubble behavior.
The problem of a 3D bubble rising in a viscous liquid has
been widely studied since the last century. The presence of
walls, as in the case of a Hele-Shaw geometry, will modify
the flow field around the bubble, and therefore the shape and
motion of the bubble during its rise [6-8]. Introducing addi-
tional lateral walls in the cell will modify the flow around
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the bubble more drastically.
The inertial regime of bubbles freely rising in a thin-gap
cell was investigated in detail by Roig et al. [9] and Filella
et al. [10]. They highlighted the existence of different types
of bubble motion and provided a characterization of the dif-
ferent paths observed for increasing bubble sizes. Filella et
al. [10] proposed a simple generic estimation for the mean
rise velocity of the bubble Vb valid for a large range of bub-
bles’ sizes, Vb,∞ ≃ 0.7

√
gdeq, which can also be expressed

as
Vb,∞ ≃ k (h/d)1/6 √

gd, (1)

where k = 0.75 and Vb is denoted Vb,∞ for consistency with
the remainder of the paper. In this expression, g is the gra-
vitational acceleration, and the diameters

deq =
(
3d2h/2

)1/3
and d =

√
4A /π (2)

are, respectively, the three-dimensional equivalent diameter
of the bubble calculated with its volume (deq), and the pla-
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nar equivalent diameter of the bubble determined from the
area A covered by the bubble in the plane of the cell (d).
Equation (1) indicates that the mean vertical velocity of the
bubble Vb is not only proportional to the gravitational velo-
city

√
gd but also depends on the parameter h/d imposed

on the bubble by the small gap. This expression correctly
describes the rise velocity of bubbles in the regimes with
path and shape oscillations in cells with gap thicknesses of
1 mm [9] and 3 mm [10]. Nevertheless, it does not account
for the effect of the lateral confinement on the rise velocity,
which is within the scope of the present investigation.

II. EXPERIMENTAL TOOLS

The experimental apparatus consisted of a thin-gap cell
of thickness h ≃ 2.8 mm, height H and width Wc orien-
ted vertically and filled with distilled water. The air bub-
bles were released individually from a syringe connected
to a nozzle located in the centre at the bottom of the cell.
The experiments were performed at ambient temperature of
(19± 1)◦C, as described in Pavlov et al. [11]. PMMA pla-
tes were included inside the cell as internal lateral walls to
reduce the effective width from Wc to W . The experiments
were performed in three different cells, one made in PMMA
and two made of glass plates with heights H between 30 and
50 cm and widths Wc between 9 and 21 cm. Internal walls
were included, when needed, in order to reduce the effective
width from Wc to W = 9, 7, 4 and 2.4 cm. The motion of the
bubble was recorded using a high-speed camera with frame
rates ranging from 150 to 1000 frames per second, and a
spatial resolution between 100 and 200 µm/px, depending
on the experiments. A LED backlight illumination was used
to generate uniform lighting. The area, contour and centroid
of the bubble were obtained using typical image processing
techniques.

The behavior of the bubble can be further characterized
by two Reynolds numbers [12],

Re =
Vbd
ν

and Reh = Re
(

h
d

)2

. (3)

The first, Re, characterizes the in-plane motion of the bub-
ble, and the second is associated with viscous diffusion in
the gap. The inertial regime, which is the focus of the pre-
sent work, corresponds to both Re ≫ 1 and Reh ≫ 1.

III. RESULTS AND DISCUSSION

In a previous study [11], a description of the different rise
regimes is made for the case of laterally confined bubbles ri-
sing in a thin-gap cell. In this paper we will focus on the re-
gimes with path and shape oscillations about a vertical path
and also in the regime that consists of a rectilinear path with
periodic shape oscillations. These regimes are presented in
Fig. 1. In these regimes, an influence of lateral confinement
on the average rise velocity and on the shape of the bubble
is observed. The influence of the cell width W on the bubble
shape can be characterized by the aspect ratio χ = a/b, de-
fined as the average over the stationary regime of the ratio
between the lengths of the major and minor axes (a and b,
respectively) of the ellipse that best fits the bubble contour
at each time step (Fig. 2).

We are interested, in particular, in the influence of the
lateral confinement on the different magnitudes that charac-
terize the movement of the bubble, whether they are magni-
tudes averaged over time (such as mean velocity or aspect
ratio) or magnitudes obtained from the analysis of periodic
signals (such as the frequency of oscillation).

FIG. 1: Different regimes observed in the experiments (from left
to right): ♢: path oscillations and moderate shape oscillations
around a vertical path, ⃝: path oscillations and large shape osci-
llations (usually with a horizontal drift in the path), ▽: path and
large shape oscillations around a vertical path, ▷: rectilinear path
with periodic shape oscillations.

FIG. 2: Comparison of the bubble contour with the ellipse used to
characterize its shape and the aspect ratio χ = a/b.

An example of the studied magnitudes (instantaneous ve-
locity and deformation) is shown in Fig. 3 for a bubble with
path and shape oscillations and in Fig. 4 for the case with
only shape oscillations.

The presence of the walls modifies the flow around the
bubble. For sufficiently strong lateral confinement, the spa-
ce available for the descent of the liquid around a rising bub-
ble is reduced. We can define the parameter ξ = 1− d/W ,
that compares the space let free for the downward motion
of the liquid with the total width of the cell. To satisfy mass
conservation, the mean downward velocity of the fluid su-
rrounding the bubble U f can be estimated in a first approxi-
mation from the mean bubble rise velocity Vb and the mean
bubble width ⟨Wb⟩ as:

U f =Vb
⟨Wb⟩

W −⟨Wb⟩
. (4)

If we further approximate ⟨Wb⟩ by d (in practice, the ratio
⟨Wb⟩/d takes values between 0.9 and 1.1), Eq. (4) can be

Pavlov et al. / Anales AFA - XVI Meeting on Recent Advances of Physics of Fluids and its Applications 66-70 67



-1 0 1

x (cm)

26

27

28

29

30

31

32

33

34

35

36

y
 (

c
m

)

FIG. 3: Example of a bubble rising in a cell with W = 2.4 cm.
Left: path of the center of mass of the bubble with d = 1.09 cm and
its contours at different times. The contours are shown in colors,
which serve to identify the values of the different signals at those
particular instants in time. In addition, the characteristic ellipse in
each case and its minor axis are shown as a gray dotted line. Top
right: instantaneous velocity of the center of mass in the vertical
(Vy, black solid line) or horizontal (Vx, black dashed line) direction
as a function of time. The gray dotted lines correspond to fits by a
sine function. Bottom right: aspect ratio χ as a function of time.
The mean value of the signal is shown as a horizontal line.
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FIG. 4: Left: contours of a bubble with d = 1.20 cm which shows
only shape oscillations, at different times. Right: aspect ratio χ as
a function of time for this bubble.

written as:
U f =Vb

d
W −d

. (5)

A mean relative velocity between the bubble and the liquid
can then be introduced as

Urel =Vb +U f =Vb
W

W −d
=

Vb

ξ
. (6)

Fig. 5 shows both Vb and Urel as a function of d for the
different lateral confinements. As can be seen, while the
mean rise velocity Vb is lower for stronger lateral confine-
ments, the values of Urel are located in a single curve for
all the studied values of W . This indicates that a bubble of a
given size in these regimes always rises with the same value
of Urel , regardless of the lateral confinement. Therefore, ξ

FIG. 5: Bubble mean rise velocity (top) and mean relative velo-
city between the bubble and the surrounding fluid (bottom), as a
function of d. The color of the data points is associated with the
value of the cell width W (empty black: W = 21 cm, filled black:
W = 15 cm, orange: W = 9 cm, blue: W = 7 cm, green: W = 4 cm,
red: W = 2.4 cm), and each symbol (being it empty or filled) re-
presents a rise regime (see Fig. 1).

is a parameter that quantifies, in the studied regimes, how
much slower a bubble of diameter d rises in a cell of width
W with respect to the velocity that the same bubble would
have in the absence of lateral confinement. In the limit of no
lateral confinement, ξ =⇒ 1, and thus Urel ≃ Vb,∞, which
can be used to generalize equation (1) in order to account
for the lateral confinement [13].

FIG. 6: χ as a function of d. The symbol convention is the same as
in Fig. 5.

For a given bubble size, a stronger confinement also pro-
duces less elongated shapes, i.e., χ closer to unity (Fig. 6).
The effect of confinement, that is, the departure from the un-
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confined case (which can be taken as the W = 21 cm case
[11]) occurs for smaller bubble sizes in the case of the mean
rise velocity as compared with the mean aspect ratio of the
bubble. This can be particularly noticed in the W = 7 cm
case, for which the departure from the mean rise velocity of
unconfined occurs already at d ≈ 0.7 cm, while for bubbles
of that size the value of χ is the same in that confinement as
compared with the unconfined case. More generally, if one
defines dcV (W ) (resp. dcχ(W )) as the diameter for which the
effect of the confinement begins to be noticed in Vb (resp.
χ) for a given W , then dcV (W )< dcχ(W ).

For sufficiently confined bubbles, there is a small size
range for which the bubble rises with shape oscillations but
with a vertical center of mass trajectory. This regime is not
observed in the unconfined case because the trajectory of
the bubble eventually becomes unstable and begins to show
oscillations, which may or may not be regular. The lateral
confinement thus provides a stabilizing effect to the move-
ment of the bubble in this scenario.

For bubbles with both path and shape oscillations the fun-
damental frequency f is that corresponding to the path osci-
llations. This frequency, f is related with the frequency fχ ,
corresponding to shape oscillations, being f = fχ/2 (Fig.
3). This indicates that the bubble aspect ratio has two os-
cillations at every period of path oscillation, which in turn
reflects the symmetry of the path. In contrast, in the case of
bubbles that only have shape oscillations the only frequency
will be fχ . We present, then, in Fig. 7 the frequency values
corresponding to the shape oscillations, for all the bubbles
studied in this work.

FIG. 7: Frequency fχ as a function of d. The symbol convention is
the same as in Fig. 5.

For each W , the values of fχ for bubbles in the regime of
only shape oscillations are close to those of the biggest bub-
bles showing path oscillations. This means that, even if the
characteristics of the rise regime are completely different,
the frequency of the shape oscillations does not change bet-
ween the two regimes.

Moreover, the frequency of oscillation does not depend
on the cell width (except for the most confined cases, ξ <
0.6, for which a “bouncing” effect appears [11]). The same
can be said for the amplitude of oscillation of the vertical
component of the velocity (Fig. 8). This means that the cha-
racteristic velocity scale that controls those parameters is
the relative velocity between the bubble and the fluid and
not the bubble mean rise velocity [11].

FIG. 8: Amplitude of oscillation of the vertical component of the
velocity, Vy, as a function of d. The symbol convention is the same
as in Fig. 5.

It is interesting to point out some similarities between the
laterally confined cases and the problem of a bubble rising
in a thin-gap cell that is laterally unbounded, in the presen-
ce of a moderate counterflow. In that problem, it was found
[14] that the bubble velocity slows down in the presence
of a counterflow of mean velocity Uc f , its final rise velo-
city being Vb−Uc f (where Uc f was always smaller than Vb).
This means that the mean relative velocity between the bub-
ble and the fluid remains unchanged with respect to the case
of the bubble rising freely (in the absence of counterflow),
as it is the case in the laterally confined cases. Moreover,
the velocity amplitudes and frequency of oscillation also
remain the same regardless of the counterflow, as it is the
case with the lateral confinement. However, some differen-
ces arise, particularly with respect to the bubble shape. The
presence of a counterflow barely modifies the mean aspect
ratio χ of the bubble, while it was seen (Fig. 6) that the la-
teral confinement produces a decrease in the value of χ for
a bubble of a given size. A similar behavior can be seen in
the amplitude of the orientation of the bubble (not shown
in this work), which is in fact a magnitude that is strongly
related to χ [11].

IV. CONCLUSIONS

We investigated the oscillatory motion of inertial bubbles
rising in a thin-gap cell with an additional lateral confine-
ment. The influence of the cell width W on the bubble rise
velocity, shape and oscillations was characterized. A mean
relative velocity between the bubble and the fluid was in-
troduced and shown to be independent of W . The analogy
with the results for a counterflow experiment without lateral
confinement was discussed. Finally, for strong enough late-
ral confinements we also showed the existence of a regime
for which the bubble exhibits only shape oscillations.
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