13
[17] Y. Wang, J. Ren, K. Deng, L. Gui e Y. Tang. ChemInform Abstract: Preparation of Tractable Platinum,
Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media. ChemInform 31,
no-no (2000).
[18] S. Arora, M. L. Singla y P. Kapoor. Evidence for monoalkoxide species on the surface of palladium
nanoparticles synthesized in ethylene glycol. Mater. Chem. Phys. 114, 107-112 (2009).
[19] J. Quinson, M. Inaba, S. Neumann, A. A. Swane, J. Bucher, S. B. Simonsen, L. T. Kuhn, J. J. K.
Kirkensgaard, K. M. Ø. Jensen, M. Oezaslan, S. Kunz y M. Arenz. Investigating Particle Size Effects
in Catalysis by Applying a Size-Controlled and Surfactant-Free Synthesis of Colloidal Nanoparticles in
Alkaline Ethylene Glycol: Case Study of the Oxygen Reduction Reaction on Pt. ACS Catalysis 8, 6627-
6635
(2018).
[20] L.-J. Chen, C.-C. Wan e Y.-Y. Wang. Chemical preparation of Pd nanoparticles in room temperature
ethylene glycol system and its application to electroless copper deposition. J. Colloid Interface Sci. 297,
143-150 (2006).
[21] S.-H. Wu y D.-H. Chen. Synthesis and characterization of nickel nanoparticles by hydrazine reduction
in ethylene glycol. J. Colloid Interface Sci. 259, 282-286 (2003).
[22] N. R. N. Roselina, A. Aziz, K. M. Hyie, C. Mardziah, A. Kalam, N. Saad y Z. Salleh. The Role of
Hydroxide Ions in the Synthesis of Ni Nanoparticles Using High Temperature Polyol Method. Appl.
Mech. Mater. 391, 18-22 (2013).
[23] G. S. Okram, A. Soni y R. Prasad. The pH-Controlled Particle Size Tuning of Nanocrystalline Ni in
Polyol Synthesis Method Without Additional Cappant. Adv. Sci. Lett. 4, 132-135 (2011).
[24] L. D’Souz y S. Sampath. Preparation and Characterization of Silane-Stabilized, Highly Uniform,
Nanobimetallic Pt-Pd Particles in Solid and Liquid Matrixes. Langmuir 16, 8510-8517 (2000).
[25] H. Ewe, E. Justi y M. Pesditschek. Ethylene glycol as fuel for alkaline fuel cells. Energy Conversion
15, 9-14 (1975).
[26] I.-H. Ko, W.-D. Lee, J. Y. Baek, Y.-E. Sung y H.-I. Lee. Modified polyol method for a highly alloyed
PtRu/C electrocatalyst: Effect of hot injection of metal precursor and NaOH. Mater. Chem. Phys. 183,
11-17 (nov. de 2016).
[27] C. Bock, C. Paquet, M. Couillard, G. A. Botton y B. R. MacDougall. Size-Selected Synthesis of PtRu
Nano-Catalysts: Reaction and Size Control Mechanism. J. Am. Chem. Soc. 126, 8028-8037 (2004).
[28] R. Joseyphus, T. Matsumoto, H. Takahashi, D. Kodama, K. Tohji y B. Jeyadevan. Designed synthesis
of cobalt and its alloys by polyol process. J. Solid State Chem. 180, 3008-3018 (2007).
[29] S. E. Skrabalak, B. J. Wiley, M. Kim, E. V. Formo e Y. Xia. On the Polyol Synthesis of Silver
Nanostructures: Glycolaldehyde as a Reducing Agent. Nano Lett. 8, 2077-2081 (2008).
[30] N. V. Long, T. Hayakawa, T. Matsubara, N. D. Chien, M. Ohtaki y M. Nogami. Controlled synthesis
and properties of palladium nanoparticles. J. Exp. Nanosci. 7, 426-439 (2012).
[31] S. Navaladian, B. Viswanathan, T. Varadarajan y R. Viswanath. A Rapid Synthesis of Oriented
Palladium Nanoparticles by UV Irradiation. Nanoscale Res. Lett. 4, 181-186 (2008).
[32] N. Gonçalves, J. Carvalho, Z. Lima y J. Sasaki. Size-strain study of NiO nanoparticles by X-ray powder
diffraction line broadening. Mater. Lett. 72, 36-38 (2012).
[33] G. Williamson y W. Hall. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica
1, 22-31 (1953).
[34] T. Harada, S. Ikeda, M. Miyazaki, T. Sakata, H. Mori y M. Matsumura. A simple method for preparing
highly active palladium catalysts loaded on various carbon supports for liquid-phase oxidation and
hydrogenation reactions. J. Mol. Catal. A Chem. 268, 59-64 (2007).