REFERENCIAS
[1] E. Rosenblatt, E. Zubizarreta et al. Radiotherapy in cancer care: facing the global challenge (International Atomic Energy
Agency Vienna, 2017).
[2] R. H. Tijssen, M. E. Philippens, E. S. Paulson, M. Glitzner, B. Chugh, A. Wetscherek, M. Dubec, J. Wang y U. A. van der Heide.
MRI commissioning of 1.5T MR-linac systems – a multi-institutional study. Radiother. Oncol. 132, 114-120 (2019).
[3] J. J. Lagendijk, B. W. Raaymakers, A. J. Raaijmakers, J. Overweg, K. J. Brown, E. M. Kerkhof, R. W. van der Put, B. Hårdemark,
M. van Vulpen y U. A. van der Heide. MRI/linac integration. Radiother. Oncol. 86, 25-29 (2008).
[4] M. J. Menten, M. F. Fast, S. Nill, C. P. Kamerling, F. McDonald y U. Oelfke. Lung stereotactic body radiotherapy with an
MR-linac – Quantifying the impact of the magnetic field and real-time tumor tracking. Radiother. Oncol. 119, 461-466 (2016).
[5] H. E. Bainbridge, M. J. Menten, M. F. Fast, S. Nill, U. Oelfke y F. McDonald. Treating locally advanced lung cancer with a 1.5
T MR-Linac – Effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated
radiotherapy. Radiother. Oncol. 125, 280-285 (2017).
[6] M. Valente. Fundamentos de física médica. Facultad de Matemática, Astronomía, Física y Computación, UNC (2020).
[7] H. Bouchard y A. Bielajew. Lorentz force correction to the Boltzmann radiation transport equation and its implications for
Monte Carlo algorithms. Phys. Med. Biol. 60, 4963-4971 (2015).
[8] M. J. Berger. Monte Carlo calculation of the penetration and diffusion of fast charged particles. Methods in Computational
Physics. 135 (1963).
[9] A. J. E. Raaijmakers, B. W. Raaymakers y J. J. W. Lagendijk. Experimental verification of magnetic field dose effects for the
MRI-accelerator. Phys. Med. Biol. 52, 4283-4291 (2007).
[10] R. G. Figueroa, L. Rojas y M. Valente. Trajectory control of electron beams using high intensity permanent magnests for linac-
adaptable convergent beam radiotherapy. Appl. Radiat. Isot. 151, 13-18 (2019).
[11] V. Zanganeh, R. Khabaz y F. Aghili. Investigation the trend of different magnetic fields types on linac photon beam mode by
Monte Carlo method using Geant4 toolkit. Radiat. Phys. Chem. 188, 109603 (2021).
[12] A. Gayol y M. Valente. Estudio analitico y por simulación Monte Carlo de la influencia de campos magnéticos intensos en la
trayectoria de electrones con energías típicas de radioterapia MRI-LINAC. Anales AFA 33, 6-11 (2022).
[13] K. Sickafus, E. Kotomin y B. Uberuaga. Radiation Effects in Solids. NATO Science Series (2007).
[14] J. S. Aubin, A. Keyvanloo, O. Vassiliev y B. G. Fallone. A deterministic solution of the first order linear Boltzmann transport
equation in the presence of external magnetic fields. Med. Phys. 42, 780-793 (2015).
[15] P. A. Pérez y M. Valente. Curso de introducción al procesamiento de imágenes radiológicas en ámbito clínico. https://www.
famaf.unc.edu.ar/~pperez1/manuales/cim/cap6.html#introduccion. 2018.
[16] A. F. Bielajew y B. Boulevard. Fundamentals of the Monte Carlo method for neutral and charged particle transport (2000).
[17] G. Battistoni, T. Boehlen, F. Cerutti, P. W. Chin, L. S. Esposito, A. Fassò, A. Ferrari, A. Lechner, A. Empl, A. Mairani, A.
Mereghetti, P. G. Ortega, J. Ranft, S. Roesler, P. R. Sala, V. Vlachoudis y G. Smirnov. Overview of the FLUKA code. Ann.
Nucl. Energy 82, 10-18 (2015).
[18] T. Bohlen, F. Cerutti, M. Chin, A. Fassò, A. Ferrari, P. Ortega, A. Mairani, P. Sala, G. Smirnov y V. Vlachoudis. The FLUKA
Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets 120, 211-214 (2014).
[19] G. Battistoni, J. Bauer, T. T. Boehlen, F. Cerutti, M. P. W. Chin, R. D. S. Augusto, A. Ferrari, P. G. Ortega, W. Kozłowska, G.
Magro, A. Mairani, K. Parodi, P. R. Sala, P. Schoofs, T. Tessonnier y V. Vlachoudis. The FLUKA Code: An Accurate Simulation
Tool for Particle Therapy. Front. Oncol. 6(2016).
[20] C. Werner. MCNP6.2 Release Notes. Los Alamos National Laboratory. Report LA-UR-18-20808. 2018.
[21] C. Werner. MCNP Users Manual - Code Version 6.2MCNP Users Manual - Code Version 6.2. Los Alamos National Laboratory.
Report LA-UR-17-29981. 2017.
[22] S. Agostinelli et al. Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250-303 (2003).
[23] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G.
Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Genero-
wicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson,
F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero,
B. Mascialino, I. McLaren, P. M. Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J.
Perl, A. Pfeiffer, M. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka,
E. Tcherniaev, B. Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J. Wellisch, D. Williams, D. Wright y H.
Yoshida. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270-278 (2006).