AGRADECIMIENTOS
El presente trabajo fue parcialmente financiado por CONICET, proyecto PIP 11220200100751CO, por SeCyT-UNC
proyecto 33620180100366CB y por la Universidad de La Frontera, Chile por medio del proyecto DI21-0068. Este trabajo
utilizó recursos computacionales del CCAD de la Universidad Nacional de Córdoba (https://ccad.unc.edu.ar/), que forman
parte del SNCAD del MinCyT de la República Argentina.
REFERENCIAS
[1]
C. A. S. Dunning y M. Bazalova-Carter. Optimization of a table-top x-ray fluorescence computed tomography
(XFCT) system. Physics in Medicine and Biology (2018).
[2]
R. Figueroa, M. Santibáñez, F. Malano y M. Valente. Optimal configuration for detection of gold nanoparticles in
tumors using KβX-ray fluorescence line. Rad. Phys. Chem. 117, 198-202 (2015).
[3]
I. Romero, Y. Fang, M. Lun y C. Li. X-ray Fluorescence Computed Tomography (XFCT) Imaging with a Superfine
Pencil Beam X-ray Source. Photonics 8, 236- (2021). https://doi.org/10.3390/photonics8070236.
[4]
J. Vedelago, F. Mattea y M. Valente. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental
dose enhancement determination in theranostics. Applied Radiation and Isotopes 141, 182
-
186 (2018).https :
//doi.org/10.1016/j.apradiso.2018.02.028.
[5]
M. Santibáñez, R. Saavedra, J. Vedelago, F. Malano y M. Valente. Optimized EDXRF system for simultaneous
detection of gold and silver nanoparticles in tumor phantom. Radiation Physics and Chemistry 165, 108415 (dic. de
2019).ISSN: 0969-806X. https://doi.org/10.1016/j.radphyschem.2019.108415.
[6]
S. Zhang et al. Quantitative Imaging of Gd Nanoparticles in Mice Using Benchtop Cone-Beam X-ray Fluorescence
Computed Tomography System. International Journal of Molecular Sciences 20 (2019).ISSN: 1422-0067. https:
//www.mdpi.com/1422-0067/20/9/2315.
[7]
S. G. Uribarri. Principios matemáticos de la reconstrucción de imágenes tomográficas. CIENCIA ergo-sum 10,
271-281 (2017). ISSN: 2395-8782. https://cienciaergosum.uaemex.mx/article/view/7317.
[8]
V. E. Vidal Gimeno, L. A. Flores, P. Mayo Nogueira, F. d. A. Ródenas Escribá y G. J. Verdú Martín. Algoritmo
Paralelo de Reconstrucción de Imágenes TAC. Grupo Senda (2012). https://riunet.upv.es/handle/10251/50444.
[9]
A. Boudjelal, A. Elmoataz, B. Attallah y Z. Messali. A Novel Iterative MLEM Image Reconstruction Algorithm
Based on Beltrami Filter: Application to ECT Images. Tomography (Ann Arbor, Mich.) 7, 286
-
300 (2021).https:
//doi.org/10.3390/tomography7030026.
[10]
PENELOPE: A Code System for Monte-Carlo Simulation of Electron and Photon Transport Accessed: 2024-12-11.
2018. http://www.oecd-nea.org/tools/abstract/detail/nea-1525.
[11]
F. A. et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magnetic Resonance
Imaging 9, 1323-41 (2012).https://dx.doi.org/10.1088/1748-0221/6/05/T05001.
[12]
M. Carrara, G. Gambarini, S. Tomatis y M. Valente. Dose distribution measurements by means of gel-layer
dosimeters. Evaluation of algorithms for artifacts amendment. Nucl. Inst. Met. A 579, 334
-
8 (2007). https://doi.org/
10.1016/j.nima.2007.04.072.
[13]
M. Valente et al. Gel dosimetry measurements and Monte Carlo modeling for external radiotherapy photon beams.
Comparison with a treatment planning system dose distribution. Nuclear Instruments and Methods in Physics
Research Section A 580, 497-501 (2007).https://doi.org/10.1016/j.nima.2007.05.243.
[14]
P. Pérez. Modelado y desarrollo de un sistema de cálculo integrado para aplicaciones en medicina nuclear Tutor:
M. Valente, Universidad Nacional de Córdoba, Argentina. 2014. https://repositoriosdigitales.mincyt.gob.ar/vufind/
Record/RDUUNC_83684b7848d273906e3220db00258ab0.
[15]
M. Santibáñez, R. Saavedra, J. Vedelago, F. Malano y M. Valente. Optimized EDXRF system for simultaneous
detection of gold and silver nanoparticles in tumor phantom. Radiation Physics and Chemistry 165, 108415 (dic. de
2019).ISSN: 0969-806X. http://dx.doi.org/10.1016/j.radphyschem.2019.108415.
[16]
F. Geser et al. Characterization of the VARIAN®PaxScan 2020+ flat panel detector for quantitative X-ray imaging.
X-ray Spectrom. 45, 169-75 (2016).https://doi.org/10.1016/j.nima.2007.04.072.
[17]
A. Andersen y A. Kak. Simultaneous Algebraic Reconstruction Technique (SART): A superior implementation of
the ART algorithm. Ultrasonic Imaging 6, 81
-
94 (1984).ISSN: 0161-7346. https://www.sciencedirect.com/science/
article/pii/0161734684900087.
[18]
G. Wang y M. Jiang. Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART). Journal of X-ray
Science and Technology 12, 169-177 (2004). https://api.semanticscholar.org/CorpusID:116997800.
Martin et al. / Anales AFA Vol. 35 Nro. 4 (Diciembre 2024 - Marzo 2025) 95-102 102