
[8] B. W. Raaymakers, A. J. E. Raaijmakers y J. J. W. Lagendijk. Feasibility of MRI guided proton therapy: magnetic field dose
effects. Physics in Medicine and Biology 53, 5615-5622 (sep. de 2008).ISSN: 1361-6560. http://dx.doi.org/10.1088/0031-
9155/53/20/003.
[9] M. Moteabbed, J. Schuemann y H. Paganetti. Dosimetric feasibility of real-time MRI-guided proton therapy. Medical Physics
41 (nov. de 2014).ISSN: 2473-4209. http://dx.doi.org/10.1118/1.4897570.
[10] A. Hoffmann, B. Oborn, M. Moteabbed, S. Yan, T. Bortfeld, A. Knopf, H. Fuchs, D. Georg, J. Seco, M. F. Spadea, O. Jäkel, C.
Kurz y K. Parodi. MR-guided proton therapy: a review and a preview. Radiation Oncology 15 (mayo de 2020).ISSN: 1748-717X.
http://dx.doi.org/10.1186/s13014-020-01571-x.
[11] T. T. Pham, B. Whelan, B. M. Oborn, G. P. Delaney, S. Vinod, C. Brighi, M. Barton y P. Keall. Magnetic resonance imaging
(MRI) guided proton therapy: A review of the clinical challenges, potential benefits and pathway to implementation. Radiothe-
rapy and Oncology 170, 37-47 (mayo de 2022).ISSN: 0167-8140. http://dx.doi.org/10.1016/j.radonc.2022.02.031.
[12] M. J. Menten, M. F. Fast, S. Nill, C. P. Kamerling, F. McDonald y U. Oelfke. Lung stereotactic body radiotherapy with an MR-
linac – Quantifying the impact of the magnetic field and real-time tumor tracking. Radiotherapy and Oncology 119, 461-466
(jun. de 2016).ISSN: 0167-8140. http://dx.doi.org/10.1016/j.radonc.2016.04.019.
[13] J. J. Lagendijk, B. W. Raaymakers, A. J. Raaijmakers, J. Overweg, K. J. Brown, E. M. Kerkhof, R. W. van der Put, B. Hårdemark,
M. van Vulpen y U. A. van der Heide. MRI/linac integration. Radiotherapy and Oncology 86, 25-29 (ene. de 2008).ISSN: 0167-
8140. http://dx.doi.org/10.1016/j.radonc.2007.10.034.
[14] H. Bainbridge, M. Menten, M. Fast, S. Nill, U. Oelfke y F. McDonald. Treating locally advanced lung cancer with a 1.5 T
MR-Linac - Effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated
radiotherapy. Radiotherapy and Oncology 129, 280-285 (2017).
[15] H. E. Bainbridge, M. J. Menten, M. F. Fast, S. Nill, U. Oelfke y F. McDonald. Treating locally advanced lung cancer with a 1.5
T MR-Linac – Effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated
radiotherapy. Radiotherapy and Oncology 125, 280-285 (nov. de 2017).ISSN: 0167-8140. http://dx.doi.org/10.1016/j.radonc.
2017.09.009.
[16] M. Valente. Fundamentos de física médica (Facultad de Matemática, Astronomía, Física y Computación, UNC, 2020).
[17] H. Bouchard y A. Bielajew. Lorentz force correction to the Boltzmann radiation transport equation and its implications for
Monte Carlo algorithms. Physics in Medicine and Biology 60, 4963-4971 (jun. de 2015).ISSN: 1361-6560. http://dx.doi.org/10.
1088/0031-9155/60/13/4963.
[18] M. Berger. Monte Carlo calculation of the penetration and diffusion of fast charged particles. Methods in Computational Physics
1, 135-215 (1963).
[19] B. W. Raaymakers, A. J. E. Raaijmakers y J. J. W. Lagendijk. Feasibility of MRI guided proton therapy: magnetic field dose
effects. Physics in Medicine and Biology 53, 5615-5622 (sep. de 2008).ISSN: 1361-6560. http://dx.doi.org/10.1088/0031-
9155/53/20/003.
[20] R. Wolf y T. Bortfeld. An analytical solution to proton Bragg peak deflection in a magnetic field. Physics in Medicine and
Biology 57, N329-N337 (ago. de 2012).ISSN: 1361-6560. http://dx.doi.org/10.1088/0031-9155/57/17/N329.
[21] B. M. Oborn, S. Dowdell, P. E. Metcalfe, S. Crozier, R. Mohan y P. J. Keall. Proton beam deflection in MRI fields: Implications
for MRI-guided proton therapy. Medical Physics 42, 2113-2124 (mayo de 2015).ISSN: 2473-4209. http://dx.doi.org/10.1118/1.
4916661.
[22] K. Sickafus, E. Kotomin y B. Uberuaga. Radiation Effects in Solids (NATO Science Series, 2007).
[23] J. St. Aubin, A. Keyvanloo, O. Vassiliev y B. G. Fallone. A deterministic solution of the first order linear Boltzmann transport
equation in the presence of external magnetic fields. Medical Physics 42, 780-793 (ene. de 2015).ISSN: 2473-4209. http :
//dx.doi.org/10.1118/1.4905041.
[24] A. Bielajew. Fundamentals of the Monte Carlo method for neutral and charged particle transport (Boulevard, 2000).
[25] G. Battistoni, J. Bauer, T. T. Boehlen, F. Cerutti, M. P. W. Chin, R. Dos Santos Augusto, A. Ferrari, P. G. Ortega, W. Kozłowska,
G. Magro, A. Mairani, K. Parodi, P. R. Sala, P. Schoofs, T. Tessonnier y V. Vlachoudis. The FLUKA Code: An Accurate
Simulation Tool for Particle Therapy. Frontiers in Oncology 6(mayo de 2016).ISSN: 2234-943X. http://dx.doi.org/10.3389/
fonc.2016.00116.
[26] T. Böhlen, F. Cerutti, M. Chin, A. Fassò, A. Ferrari, P. Ortega, A. Mairani, P. Sala, G. Smirnov y V. Vlachoudis. The FLUKA
Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets 120, 211-214 (jun. de
2014).ISSN: 0090-3752. http://dx.doi.org/10.1016/j.nds.2014.07.049.
[27] F. Malano, F. Mattea, F. A. Geser, P. Pérez, D. Barraco, M. Santibáñez, R. Figueroa y M. Valente. Assessment of FLUKA,
PENELOPE and MCNP6 Monte Carlo codes for estimating gold fluorescence applied to the detection of gold-infused tumoral
volumes. Applied Radiation and Isotopes 151, 280-288 (sep. de 2019).ISSN: 0969-8043. http://dx.doi.org/10.1016/j.apradiso.
2019.06.017.
[28] W. S. Kozłowska, T. T. Böhlen, C. Cuccagna, A. Ferrari, F. Fracchiolla, G. Magro, A. Mairani, M. Schwarz, V. Vlachoudis y D.
Georg. FLUKA particle therapy tool for Monte Carlo independent calculation of scanned proton and carbon ion beam therapy.
Physics in Medicine and Biology 64, 075012 (mar. de 2019).ISSN: 1361-6560. http://dx.doi.org/10.1088/1361-6560/ab02cb.
A. Gayol et al. / Anales AFA Vol. 36 Nro. 3 (Septiembre 2025 - Diciembre 2025) 43 - 51 52