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En el presente trabajo se implementó un sistema de microscopía de fluorescencia que permite la adquisición de imágenes
en tres dimensiones para su posterior procesamiento mediante el algoritmo SUPPOSe 3D con el objetivo de obtener
una reconstrucción con superresolución. SUPPOSe es un algoritmo de deconvolución con superresolución que permite
reconstruir la estructura verdadera distorsionada en una imagen incorporando información a priori. La aproximación
SUPPOSe consiste en aproximar la estructura real en la muestra como una superposición de fuentes puntuales de
igual intensidad, llamadas fuentes virtuales. Este procedimiento permite simplificar el problema de deconvolución y
lo convierte en un problema de minimización sin restricciones, que debe resolverse encontrando las posiciones de las
fuentes virtuales. Estas posiciones pueden tomar valores en todo el dominio y se determinan mediante la minimización
de una función objetivo a través de un algoritmo genético. A lo largo de este trabajo se puso a prueba el método
SUPPOSe para imágenes en tres dimensiones tanto generadas sintéticamente como adquiridas de manera experimental
con el sistema implementado. Se utilizaron muestras con estructuras conocidas para validar los resultados obtenidos y
evaluar el rendimiento del algoritmo en función de las características de las imágenes procesadas.
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In the present work, a fluorescence microscopy system was implemented that allows the acquisition of three dimensio-
nal images for subsequent processing using the SUPPOSe 3D algorithm with the aim of obtaining a superresolution
reconstruction. SUPPOSe is a superresolution deconvolution algorithm that allows reconstructing the true distorted
structure in an image by incorporating a priori information. The SUPPOSe approach consists of approximating the real
structure in the sample as a superposition of point sources of equal intensity, called virtual sources. This procedure sim-
plifies the deconvolution problem and converts it into an unconstrained minimization problem, which must be solved
by finding the positions of the virtual sources. These positions can take values in the whole domain and are determined
by minimizing an objective function through a genetic algorithm. Throughout this work the SUPPOSe method was
tested for both synthetically generated and experimentally acquired 3D images with the implemented system. Samples
with known structures were used to validate the results obtained and to evaluate the performance of the algorithm as a
function of the characteristics of the processed images.
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I. INTRODUCCIÓN
La microscopía óptica brinda la posibilidad de examinar

muestras vivas en condiciones similares a las que se encuen-
tran en su estado natural, lo que se ha expandido cada vez
más a partir de la amplia disponibilidad de nuevas técnicas
de marcado por fluorescencia. A medida que la investiga-
ción biológica avanza hacia la escala molecular, las limita-
ciones en términos de resolución y eficiencia lumínica son
cada vez más estrictas. En la microscopía óptica, la resolu-
ción espacial se encuentra limitada por la longitud de onda
de la luz debido a los fenómenos de interferencia y difrac-
ción. La resolución que se puede lograr con este tipo de
microscopía se encuentra limitada a aproximadamente 200
nm en la dirección lateral y aproximadamente 500 nm en
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la dirección axial, lo que dificulta el estudio de las carac-
terísticas de un objeto que posean tamaños menores o se
encuentren cercanas a distancias por debajo del límite de
difracción del sistema. Al adquirir una imagen de micros-
copía óptica, la señal proveniente del objeto observado se
encuentra degradada principalmente al proceso de forma-
ción y registro de la imagen. La degradación producida en
este proceso de formación de la imagen es determinista y
puede caracterizarse mediante la función de dispersión de
punto que se denominará PSF (del inglés point spread fun-
ction). Ésta describe la respuesta del sistema óptico frente
a un objeto puntual infinitesimal y el ancho de esta PSF es
el que define el límite de resolución del sistema. La degra-
dación producida por el proceso de registro de la imagen,
denominada ruido, es una realización de un proceso aleato-
rio del cual no es posible conocer a priori su valor, pero se
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pueden asumir propiedades estadísticas. Si el sistema óp-
tico puede considerarse invariante ante traslaciones, o sea
que la PSF es la misma en cualquier lugar del espacio de
la imagen, se puede modelar la imagen adquirida S como el
resultado de la convolución del objeto real R con la PSF I
del sistema óptico, más un término de ruido η y un nivel de
fondo constante B

S(r) = R(r)∗ I(r)+η(r)+B. (1)

El fondo incluye fluorescencia del medio desenfocado o cir-
cundante, cuentas de oscuridad, nivel de lectura o cualquier
otra contribución aditiva a la señal explorada. El ruido η

son variaciones aleatorias alrededor del nivel de señal me-
dida debidas principalmente al mismo proceso de adquisi-
ción. Se desea poder conocer R con una mejor resolución
que la dada por la respuesta del instrumento.

Existen dos grandes enfoques para mejorar la resolución
de los sistemas ópticos. El primero de ellos se basa en modi-
ficar el sistema de tal manera de lograr angostar la PSF del
instrumento [1-4]. La mayoría de estos métodos presentan
desafíos en términos de implementación y mantenimiento,
y a menudo son incompatibles con especímenes biológicos
vivos en su hábitat natural. El segundo enfoque consiste en
invertir el proceso de distorsión mediante técnicas de de-
convolución conociendo la PSF del sistema óptico. Estas
técnicas deben ser optimizadas de manera tal que se asegure
la preservación de la información biológica en el resultado
obtenido. La inversión directa en 1 es un problema mate-
mático mal condicionado, ya que debido al ruido es posible
encontrar soluciones que no tienen significado físico, tales
como valores negativos para la intensidad de la imagen. Pa-
ra obtener una estimación de R con una precisión razonable
y robustez frente al ruido, generalmente se deben utilizar
conocimientos a priori sobre la señal en cuestión. De es-
ta manera, la estimación se formula como un problema de
optimización que incorpora esta información previa.

El desafío de obtener imágenes de alta resolución más
allá del límite impuesto por la difracción, las aberraciones
y el ruido con una sola imagen fue perseguido durante dé-
cadas mediante la deconvolución. En [5] los autores exami-
nan varios algoritmos de deconvolución estándar como ser:
RIF (del inglés regularized inverse filter), regularización de
Tikhonov, Landweber, Tikhonov-Miller, Richardson-Lucy
y RL-TV (del inglés Richardson-Lucy with total-variation
regularization). Estos algoritmos se evalúan para diferen-
tes imágenes y se implementan en un software de código
abierto. El enfoque más simple para realizar la deconvolu-
ción es la minimización de la función de costo de mínimos
cuadrados que mide la similitud entre la imagen adquirida
y la estimación. Esto es una inversión directa de la convo-
lución en el dominio de Fourier, pero tiende a amplificar
el ruido presente en la imagen dando resultados con os-
cilaciones de alta frecuencia no deseadas. Una manera de
evitar la amplificación del ruido es agregar términos de re-
gularización a la función de costo, de forma tal que se pe-
nalicen valores no deseados en la solución. Tikhonov [6],
RIF [7] y Tikhonov-Miller son métodos que incorporan es-
tos términos de regularización para convertir el problema
matemático en uno bien condicionado. Sin embargo, tam-

poco se logran obtener resultados favorables en la mayoría
de los casos como en el método iterativo de Landweber [8]
que tiende a producir un ajuste excesivo en el ruido cuan-
do el número de iteraciones no se elige adecuadamente, o
en Richardson-Lucy [9, 10] que normalmente produce se-
ñales espurias cerca de transiciones bruscas en el contenido
de la imagen (artificios de Ringing) también debidas a la
amplificación del ruido. Existen métodos iterativos rápidos
que incorporan restricciones de raleza en el dominio wave-
let y donde el problema de optimización se resuelve utili-
zando nuevos parámetros y un operador de umbral suave
[11]. Todos estos términos de regularización siempre termi-
nan siendo un factor amortiguador que suaviza la solución
reconstruida. Por último, el método RL-TV [12] agrega un
término de regularización usando la norma L1 para preser-
var las discontinuidades de la imagen. Sin embargo, este
término podría causar artificios si el parámetro de regula-
rización no se elige adecuadamente, produciendo una mala
interpretación de la estructura biológica. Para todos estos
métodos de deconvolución, la mejora significativa es la re-
ducción de fluorescencia fuera de foco proveniente de otros
planos cuando el objeto es tridimensional. En cambio, la
mejora en la resolución lateral resulta marginal y en algu-
nos casos las reconstrucciones muestran artificios debido a
la técnica de deconvolución utilizada. Existen alternativas
recientes basadas en la teoría Mean Shift, como Mean-Shift
Super Resolution (MSSR) [13]. Fundamentalmente, se uti-
liza para mejorar la resolución de imágenes individuales o
en una secuencia temporal mediante el método de fluctua-
ciones de fluorescencia.

En nuestro grupo se ha desarrollado un algoritmo de
deconvolución con superresolución denominado SUPPO-
Se [14-21]. El método se basa en asumir que la estructu-
ra observada se puede aproximar como una superposición
de fuentes puntuales de igual intensidad. Al introducir esta
premisa, la deconvolución se convierte en un problema ma-
temático bien condicionado y es posible obtener soluciones
con superresolución. El algoritmo SUPPOSe puede aplicar-
se en imágenes únicas, mejorando la resolución del sistema
óptico sin comprometer la resolución temporal de la adqui-
sición. Este método ha sido implementado y validado para
imágenes adquiridas por microscopía de fluorescencia con-
vencional a partir de muestras en dos dimensiones [19].

En este trabajo se muestra la extensión del algoritmo py-
SUPPOSe a estructuras en tres dimensiones, su validación
en imágenes sintéticas y su aplicación a adquisiciones expe-
rimentales obtenidas mediante microscopía fluorescencia.
En la Sección II se introduce el algoritmo SUPPOSe en tres
dimensiones, su funcionamiento y su implementación. En
la Sección III se muestran resultados de SUPPOSe obteni-
dos a partir de pruebas realizadas con imágenes sintéticas
en tres dimensiones. En la Sección IV se muestran resulta-
dos de SUPPOSe aplicados a muestras experimentales en
tres dimensiones obtenidas mediante microscopía de fluo-
rescencia. Por último en la Sección V se detallan las mejo-
ras en el algoritmo que fueron necesarias para optimizar el
tiempo de cómputo y poder procesar estructuras tridimen-
sionales con el método pySUPPOSe.
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II. MÉTODO
Cuando se mide una imagen de microscopía, el objeto

real que se desea observar se encuentra distorsionado por la
PSF del sistema y por ruido intrínseco de la medición. Las
mediciones en este caso son tridimensionales por lo que se
realizan en forma de pila, es decir, se adquiere una secuen-
cia de imágenes donde cada una contiene un plano xy de la
muestra correspondiente a una posición z distinta. Siendo
S la imagen adquirida la misma se puede representar como
en la ecuación (1). En este caso r ∈ R3 es la coordenada en
que se realiza la medición. El algoritmo SUPPOSe asume
que la estructura real del objeto se puede aproximar como
una superposición de fuentes virtuales con igual intensidad
α , denominadas fuentes virtuales. Utilizando esta aproxi-
mación se puede estimar la estructura real R como

R̃(r) = α

N

∑
k=1

δ (r−ak), (2)

donde ak ∈ R3 es la posición de cada una de las N fuentes
virtuales utilizadas y α es la intensidad, la misma para todas
las fuentes. Por lo tanto, para reconstruir la imagen original
solo se deben encontrar las posiciones de las fuentes vir-
tuales que, convolucionadas con la PSF del sistema, mejor
aproximan la imagen S adquirida. Éstas pueden ubicarse en
cualquier punto de R3 sin ninguna restricción. Como todas
las fuentes tienen el mismo valor de intensidad α , se logran
reconstruir distintas intensidades en la imagen final median-
te la superposición de una mayor o menor cantidad de estas
fuentes en un área determinada. Las fuentes virtuales SUP-
POSe y sus posiciones no tienen correlación real con los
fluoróforos (a diferencia de lo que ocurre en algoritmos de
localización de molécula única [22-27]), sino que son dis-
tribuidas con el objetivo de aproximar la estructura R de la
mejor manera posible. De esta manera, es posible obtener
una aproximación de S como

S̃(r) = R̃(r)∗ Ĩ(r) = α

N

∑
k=1

Ĩ(r−ak), (3)

donde Ĩ es la estimación de la PSF del sistema de medi-
ción. Esta PSF puede ser obtenida de manera teórica con
los parámetros del sistema o de manera experimental. Las
posiciones de las fuentes virtuales se estiman resolviendo
un problema de optimización minimizando la siguiente fun-
ción objetivo

χ
2 = ||S(r)− S̃(r)||2, (4)

para un N y un α elegidos.
De esta manera el algoritmo SUPPOSe debe abordar un

problema de minimización en RN ×R3 sin restricciones
donde la única incógnita es la posición de las N fuentes
virtuales ak que pueden tomar cualquier valor en R3. En
general, la minimización de funciones tiene el problema de
que es muy probable que se llegue a un mínimo local y, de
esta manera, no se logre alcanzar el mínimo global, más aún
teniendo en cuenta la alta dimensionalidad de este problema
en particular. Por ello se utiliza un algoritmo genético. Este
tipo de algoritmos son capaces de evitar los extremos loca-
les y acercarse más al mínimo global a costa de realizar un

mayor número de operaciones. El algoritmo genético emula
el proceso de evolución natural [14].

III. IMÁGENES SINTÉTICAS

Las primeras pruebas de rendimiento se realizaron con
pilas de imágenes sintéticas. Una de las estructuras sinteti-
zadas consiste en dos rectas paralelas con direcciones trans-
versales contenidas en distintos planos xy. Las rectas están
separadas por una distancia en z de aproximadamente 200
nm. El resultado SUPPOSe tras procesar la imagen sintéti-
ca respectiva se muestra en la Fig. 2. La visualización tri-
dimensional de las coordenadas de la solución permite dis-
tinguir la estructura general de los datos, pero esta repre-
sentación es limitada, ya que si se acumulan fuentes en una
misma región es difícil distinguir información de profun-
didad. Por lo tanto, para generar lo que denominamos una
reconstrucción SUPPOSE se convolucionan las posiciones
de las fuentes virtuales con una función PSF mucho menor
que la del sistema óptico. La profundidad de cada plano se
encuentra codificada mediante la escala de colores de la ba-
rra de escala. Para cada plano, la intensidad se codifica co-
mo transparencia, es decir, los píxeles de mayor intensidad
(donde se acumulen más fuentes virtuales) son más opacos
y los de menor intensidad se ven más transparentes. Para
una mejor visualización se muestran vistas de proyecciones
de la reconstrucción en distintos planos para aportar mayor
información.

Para sintetizar y procesar las imágenes se utilizó una PSF
de tipo haz Gaussiano. Este tiene la característica de ser en
cada plano xy una función Gaussiana de dos dimensiones,
pero que a lo largo del eje z va variando su varianza lateral.
La intensidad de esta PSF está dada por la función

I(r,z) = I0

(
w0

w(z)

)2

exp
(
−2r2

w(z)2 )

)
, (5)

con w(z)

w(z) = w0

√
1+

(
z

zR

)2

, (6)

donde r es la distancia radial al centro del eje del haz y z la
distancia a la cintura o foco del haz, w0 es la cintura del haz
en su punto más angosto en los ejes x e y respectivamente y
zR es la distancia de Rayleigh, que es la distancia a la que
el haz alcanza una cintura de w(zR) =

√
2w0 y es calculada

como zR =
πnw2

0
λ

con n el índice de refracción del medio y
λ la longitud de onda del haz de luz. Se realizaron pruebas
para tres separaciones distintas entre rectas. Referenciadas
al parámetro σaxial de la PSF, las separaciones fueron 420
nm (2σaxial), 210 nm (σaxial) y 105 nm (0.5σaxial). Los re-
sultados obtenidos se muestran en la Fig. 1, junto con una
comparativa de los tres casos, donde se puede ver una pro-
yección en el plano xz de las coordenadas de las fuentes vir-
tuales de la solución (en color azul), junto con la estructu-
ra verdadera superpuesta (en color naranja). Los resultados
obtenidos fueron satisfactorios, el método SUPPOSe colo-
có las fuentes virtuales en los planos correctos, logrando
reconstruir la separación correcta entre las líneas en tres di-
mensiones.
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FIG. 1: Comparativa de resultados SUPPOSe para distintas separaciones de rectas transversales referenciadas al valor de σaxial de
la PSF. En la fila superior se muestra la proyección en el plano xy de las coordenadas de las fuentes virtuales y en la fila inferior la
proyección en el plano xz de las mismas, superpuestas con las coordenadas de las fuentes puntuales de la estructura verdadera.

FIG. 2: Resultados en imagen sintética de dos rectas paralelas con
direcciones transversales ubicadas en distintos planos xy y sepa-
radas 200 nm en el eje z. (a) Coordenadas en tres dimensiones de
las fuentes puntuales de la estructura verdadera. (b) Vista de una
solución obtenida tras procesar la imagen sintética. Coordenadas
en tres dimensiones de las fuentes virtuales. Y vista en el plano
xy/xz de la convolución de las posiciones de las fuentes virtuales
con una PSF mucho menor que la del sistema óptico. En este caso,
el tamaño del píxel de reconstrucción es 5 veces más pequeño que
el píxel de la imagen sintetizada. Las fuentes virtuales se convo-
lucionaron con una PSF gaussiana con un parámetro σ 6 veces
menor que el parámetro σ de la PSF de síntesis de la imagen.

En la Fig. 3 se muestran, para el caso de separación 420
nm, distintos cortes de la pila de imágenes sintetizada y del
resultado SUPPOSE. Se puede observar la mejora obtenida
en la resolución y la localización de las rectas en el eje axial.
Se observa que la solución SUPPOSE reconstruye las rectas
en los planos correspondientes a z = 700nm y z = 1120nm.
Esto da una distancia entre ellos de 420 nm, que es con-
sistente con la distancia en la estructura verdadera. En los
planos restantes se observa que, si bien existe intensidad en
la imagen sintetizada, SUPPOSE no coloca fuentes virtua-
les allí.

Se realizaron pruebas para evaluar cómo varía el rendi-
miento del algoritmo SUPPOSE ante distintos niveles de
ruido presente en las pilas procesadas utilizando la estruc-
tura de rectas separadas de 210 nm en z. En la Fig. 4 se
muestra la comparación de los resultados obtenidos para
tres niveles distintos de ruido. Se observa que, a medida que
aumenta el nivel de ruido, aumenta también la dispersión
en la distribución de las fuentes virtuales alrededor de la
estructura verdadera. Sin embargo, se puede observar que,
incluso para altos niveles de ruido, el rendimiento del algo-
ritmo sigue siendo muy robusto.

Con el objetivo de poner a prueba el método con es-
tructuras tridimensionales complejas, se sintetizaron pilas
de imágenes cuya estructura verdadera es un elipsoide hue-
co con una distribución casi uniforme de fuentes puntuales
sobre su superficie [28]. El elipsoide tiene un radio lateral
de 432 nm y un radio axial de 560 nm. Se generó la es-
tructura utilizando 2000 fuentes puntuales con un valor de
α = 100. Las pilas de imágenes sintetizadas tienen un ta-
maño de 51×51×51 píxeles. El tamaño de píxel lateral es
de 54 nm y el axial, de 35 nm. Para la síntesis se utilizó una
PSF elipsoidal gaussiana con parámetros σlateral = 162nm y
σaxial = 105nm. En la Fig. 5 se muestra la estructura verda-
dera y la solución obtenida mediante el método SUPPOSE.
A los gráficos se les ha añadido un histograma de la dis-
tancia radial desde cada fuente hasta el centro del elipsoide,
con el fin de facilitar la comparación entre las estructuras.
Se observa que SUPPOSe logra reconstruir el elipsoide con
una distribución uniforme a lo largo del cascarón. En el his-
tograma de la misma Fig. se puede observar que la distancia
radial de las fuentes al centro del elipsoide es muy similar
a la de la estructura verdadera. Algunas fuentes se encuen-
tran a distancias mayores de lo esperado, pero la cantidad
no es representativa. Para obtener estos resultados, el méto-
do se ejecutó utilizando 3000 fuentes virtuales. El tiempo de
ejecución fue de aproximadamente 5 horas, utilizando una
PC con procesador Intel Core i7-8700K y placas GPU Nvi-
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FIG. 3: En la fila superior se muestran distintos planos de la pila sintética de las rectas transversales. En la fila inferior se muestra la
reconstrucción SUPPOSe respectiva. Las rectas reconstruidas se encuentran a 420 nm de distancia al igual que las de la estructura
verdadera.

FIG. 4: Comparación de los resultados SUPPOSe para las pilas de rectas transversales separadas 210 nm ante distintas condiciones
de nivel señal-ruido. Se parte de la imagen sin ruido y el nivel de ruido aumenta de izquierda a derecha. En la fila superior se observa
el plano central de la pila procesada. En la fila intermedia se muestra la proyección en el plano xy de las coordenadas de las fuentes
virtuales de la solución y en la fila inferior la proyección en el plano xz de las mismas, superpuestas con las coordenadas de las fuentes
puntuales de la estructura verdadera.

dia GeForce GTX 1080 (2560 cores @ 1607 MHz, 8 GB
GDDR5). En la Fig. 6 se muestran distintos planos en z de
la pila sintetizada y el resultado correspondiente. El método
logra estimar la estructura real incluso en los planos donde
la información está totalmente enmascarada.

Se realizaron pruebas para evaluar el rendimiento del mé-
todo cuando se utiliza una cantidad de fuentes virtuales es-

casa en comparación con la óptima. Para este análisis, se
procesó con SUPPOSE la misma pila de imágenes sintéti-
cas de la Fig. 5, pero utilizando 200 fuentes virtuales, mien-
tras que la solución anterior para esta muestra se obtuvo con
3000. El resultado puede verse en la Fig. 7, donde se obser-
va que SUPPOSE logra definir la estructura distribuyendo
las pocas fuentes virtuales disponibles sobre la superficie
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FIG. 5: Solución SUPPOSe obtenida tras procesar la estructura
sintética de un cascarón de elipsoide (radio lateral de 432 nm y
radio axial de 560 nm). En la fila superior se muestra la estructura
verdadera, las fuentes están distribuidas de manera casi uniforme
en la superficie de la elipsoide. En la fila inferior se muestran
las coordenadas de la solución SUPPOSe obtenida junto con el
histograma de las distancias de dichas fuentes al centro de la es-
tructura.

FIG. 6: Comparación de distintos planos de la pila sintética del
elipsoide (izquierda) y la reconstrucción SUPPOSe respectiva
(derecha).

del elipsoide. Una ejecución como esta puede ser una alter-
nativa rápida (en este caso llevó 1 hora, es decir, una quinta
parte de la ejecución completa) para observar y validar la
forma aproximada del objeto que se desea reconstruir, antes
de realizar una ejecución con la cantidad de fuentes deseada
y que lleve el tiempo completo.

FIG. 7: Solución SUPPOSE para la estructura sintética del elip-
soide utilizando una cantidad de fuentes virtuales (200 fuentes)
sustancialmente inferior al valor óptimo. En la fila superior se
muestran las coordenadas de las fuentes junto con el histograma
de las distancias al centro de la estructura comparado con el de la
estructura verdadera. En la fila inferior se muestra la proyección
en el plano xy/xz de la reconstrucción obtenida.

IV. RESULTADOS EXPERIMENTALES

Tras analizar el rendimiento de SUPPOSE con datos sin-
téticos, se procedió a poner a prueba el método con da-
tos experimentales procedentes de una muestra patrón. Se
adquirieron imágenes de una estructura de cintas paralelas
presentes en una muestra de calibración Argo-SIM [29] de
la marca Argolight utilizando microscopía de epifluorescen-
cia. La estructura de la muestra consiste en una serie de cin-
tas paralelas de altura nominal e = 600±200nm dispuestas
de a pares. Las cintas de cada par están separadas una dis-
tancia d, que aumenta gradualmente desde 0 nm hasta 390
nm en pasos de 30 nm. Dado que esta muestra posee una es-
tructura conocida y con gran versatilidad, las primeras prue-
bas de concepto de pySUPPOSe3D en datos experimentales
se llevaron a cabo con dicha muestra. Al estar fabricado con
un sustrato fluorescente con índice de refracción similar al
del vidrio, se utilizó epifluorescencia de campo amplio pa-
ra adquirir las imágenes. Se puede ver un diagrama de la
estructura en la Fig. 8. El sistema utilizado para las medi-
ciones permite lograr un tamaño de píxel de 33.9 nm en el
eje lateral y de 32.6 nm en el eje axial. La muestra fue ex-
citada con luz ultravioleta de longitud de onda λ = 365nm
y presenta un pico de emisión en λ = 460nm. Se utilizó un
objetivo de inmersión en aceite con magnificación de 60×
y apertura numérica 1.45. La resolución teórica para estos
parámetros es Rlateral = 158nm y Raxial = 437nm. Se estimó
la PSF de manera experimental utilizando una muestra de
nanoesferas fluorescentes Termo Fisher TetraSpeck (mode-
lo T14792 [29]) de 100 nm de diámetro, las cuales emiten
en la misma longitud de onda que la muestra Argo-SIM. Se
registró la emisión a lo largo del eje axial de múltiples na-
nopartículas. Sumando estas contribuciones se obtuvo una
pila de imágenes correspondiente a la estimación de la PSF.
La PSF estimada se utiliza de forma directa en la operación
de convolución implementada en el algoritmo, mediante la
forma de una tabla de consultas (LUT). Esto último se de-
sarrolla con más detalle en la Sección V.
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Se procesaron con SUPPOSe las imágenes de los pares
de cintas separadas 210 nm, 180 nm y 150 nm, por ser las
que se encuentran a distancias similares a la resolución teó-
rica del sistema. Para ello, se seleccionó una región de inte-
rés para cada conjunto de cintas. El tamaño de las regiones
seleccionadas es del orden de 2.20×2.37×1.53µm3. Estas
regiones se encuentran marcadas en la imagen de la Fig. 8.

FIG. 8: Muestra Argolight Argo-SIM. En la fila superior, un dia-
grama esquemático de la estructura tridimensional de la muestra
utilizada. En la fila inferior, una de las imágenes adquiridas don-
de se marcan las regiones de interés procesadas (cintas separadas
210 nm, 180 nm y 150 nm).

SUPPOSE se ejecutó con 7000 fuentes virtuales y las co-
rridas tardaron aproximadamente 19 horas en completarse.
En la Fig. 10 se muestran los resultados para las tres sepa-
raciones de las cintas procesadas. A la izquierda se muestra
la comparación entre la imagen central de la pila adquirida
y la reconstrucción SUPPOSE. A la derecha se muestra la
proyección x,z de esta comparación.

Se puede observar en las imágenes adquiridas que la in-
formación de la distancia entre cintas está fuertemente en-
mascarada, siendo indistinguible para el caso de cintas se-
paradas a 150 nm. En todos los casos, la solución SUPPO-
Se logra una mejora en la resolución y hace que sea posible
definir la separación entre las estructuras. Se midió la dis-
tancia entre las cintas a lo largo de la dirección transversal
a la estructura en las reconstrucciones SUPPOSe obtenidas
y se registraron valores promedio de 220 nm, 190 nm y 150
nm para cada caso, que son acordes a los valores teóricos
declarados por el fabricante de la muestra.

En las soluciones SUPPOSe obtenidas, se observa una
acumulación de fuentes virtuales en el plano central de la
pila. A partir de varios análisis realizados utilizando datos
sintéticos, se concluyó que este fenómeno se debe a la falta
de información en el eje axial de la PSF debido al trun-
camiento de los datos medidos. Se realizaron pruebas con
imágenes de esferas sintéticas variando la longitud axial de
la pila de la PSF utilizada para procesarlas; los resultados
se muestran en la Fig. 9. Los resultados fueron consisten-
tes con lo observado en datos experimentales y marcan un
criterio de decaimiento en la intensidad de la PSF que deter-
mina la longitud óptima de la pila a ser medida. Es preciso

destacar que, a pesar de la falta de información de la PSF
en el eje axial, SUPPOSe logra obtener una mejora en la
resolución lateral.

V. IMPLEMENTACIÓN DEL ALGORITMO
La operación de mayor coste computacional que realiza

el algoritmo SUPPOSE es la convolución, de orden O(n6)
para el caso en tres dimensiones. Esta operación se repi-
te para cada individuo en cada iteración con el fin de eva-
luar la función objetivo. Esto lleva a que la convolución sea
la mayor responsable de los tiempos de ejecución del pro-
grama, alrededor del 95% del tiempo de cómputo total. El
código SUPPOSE fue escrito en Python (pySUPPOSE) e
implementa la convolución en tarjetas gráficas (GPUs) uti-
lizando la plataforma CUDA de Nvidia. Esta implementa-
ción reduce notablemente el tiempo de la convolución en
comparación con la utilización de una CPU. En el contex-
to de datos en tres dimensiones, el proceso de carga de la
información de la PSF del sistema representa un desafío
significativo. Para esto se implementó la convolución por
tabla de consulta o LUT. Se trata de una estructura de da-
tos que permite sustituir toda una rutina o cálculo por una
indexación de una tabla. De esta manera, es posible poseer
datos precalculados a los que el programa puede acceder rá-
pidamente en lugar de efectuar la operación una y otra vez.
En este caso, la PSF se carga como una LUT, de manera
que se utilice la información de la tabla en la operación de
convolución. Esta mejora no solo permite reducir aún más
los tiempos de cómputo, sino que también permite utilizar
PSF no analíticas precalculadas o adquiridas directamente
del sistema óptico. Para cada fuente virtual, se interpola la
PSF obtenida de la tabla para centrar la función en esa posi-
ción. Este proceso se repite para todas las fuentes virtuales
y, al ir sumando la contribución de cada PSF, se obtiene la
imagen final que se utilizará para evaluar la función obje-
tivo. Como este proceso debe repetirse para cada fuente, el
coste computacional aumenta linealmente con el número de
fuentes virtuales utilizadas.

En la Fig. 11 se exponen los resultados de la comparación
de tiempos de la convolución en función de la cantidad de
fuentes y de la cantidad de píxeles de la imagen para el caso
de ejecuciones realizadas en CPU, GPU y GPU+LUT. Se
observa que hay grandes saltos de rendimiento tanto entre
CPU y GPU como entre GPU y GPU+LUT. Es importante
señalar que todas estas pruebas fueron realizadas para imá-
genes en dos dimensiones.

VI. CONCLUSIONES
En este trabajo se logró ampliar el método pySUPPO-

Se a estructuras tridimensionales. Para ello, se optimizó el
algoritmo, permitiendo superar el desafío que suponía en
cuanto a capacidad de cómputo a través de la convolución
por tabla de consulta o LUT. El método fue puesto a prueba
con estructuras sintéticas de distintas geometrías y estruc-
turas experimentales de dimensiones conocidas, obteniendo
resultados satisfactorios. Es relevante destacar que, incluso
en condiciones de medición desafiantes, como un alto nivel
de ruido o una escasa cantidad de fuentes virtuales elegidas,
la solución SUPPOSe logra reconstruir la estructura subya-
cente. Se observó que es fundamental contar con un rango
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FIG. 9: Análisis de la influencia del truncamiento de la PSF en el resultado obtenido. En la fila superior se muestran las distintas PSF
utilizadas para el análisis. En la fila inferior se muestran los resultados SUPPOSe obtenidos para los distintos casos.

FIG. 10: Comparación entre las imágenes adquiridas y la recons-
trucción SUPPOSe para las tres separaciones entre las cintas pro-
cesadas. A la izquierda se muestra la comparación entre la ima-
gen central de la pila adquirida y la reconstrucción SUPPOSe. A
la derecha se muestra la comparación entre la proyección axial en
el plano x,z

axial de la estimación de la PSF que asegure un decaimiento
de intensidad al menos del 2% respecto a su valor máximo,
con el propósito de evitar artificios de aglomeración en el
plano central de la pila de imágenes adquiridas.

FIG. 11: Comparación de tiempos de ejecución de una convolu-
ción realizada en CPU, GPU y GPU + LUT para imágenes de
dos dimensiones. En función de la cantidad de fuentes virtuales
(Superior). En función del lado de la imagen para el caso de una
imagen cuadrada (Inferior).
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