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En el presente trabajo se implement6 un sistema de microscopia de fluorescencia que permite la adquisiciéon de imagenes
en tres dimensiones para su posterior procesamiento mediante el algoritmo SUPPOSe 3D con el objetivo de obtener
una reconstruccién con superresoluciéon. SUPPOSe es un algoritmo de deconvolucién con superresolucion que permite
reconstruir la estructura verdadera distorsionada en una imagen incorporando informacién a priori. La aproximacién
SUPPOSe consiste en aproximar la estructura real en la muestra como una superposicién de fuentes puntuales de
igual intensidad, llamadas fuentes virtuales. Este procedimiento permite simplificar el problema de deconvolucién y
lo convierte en un problema de minimizacidn sin restricciones, que debe resolverse encontrando las posiciones de las
fuentes virtuales. Estas posiciones pueden tomar valores en todo el dominio y se determinan mediante la minimizacién
de una funcién objetivo a través de un algoritmo genético. A lo largo de este trabajo se puso a prueba el método
SUPPOSe para imagenes en tres dimensiones tanto generadas sintéticamente como adquiridas de manera experimental
con el sistema implementado. Se utilizaron muestras con estructuras conocidas para validar los resultados obtenidos y
evaluar el rendimiento del algoritmo en funcién de las caracteristicas de las imdgenes procesadas.
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In the present work, a fluorescence microscopy system was implemented that allows the acquisition of three dimensio-
nal images for subsequent processing using the SUPPOSe 3D algorithm with the aim of obtaining a superresolution
reconstruction. SUPPOSe is a superresolution deconvolution algorithm that allows reconstructing the true distorted
structure in an image by incorporating a priori information. The SUPPOSe approach consists of approximating the real
structure in the sample as a superposition of point sources of equal intensity, called virtual sources. This procedure sim-
plifies the deconvolution problem and converts it into an unconstrained minimization problem, which must be solved
by finding the positions of the virtual sources. These positions can take values in the whole domain and are determined
by minimizing an objective function through a genetic algorithm. Throughout this work the SUPPOSe method was
tested for both synthetically generated and experimentally acquired 3D images with the implemented system. Samples
with known structures were used to validate the results obtained and to evaluate the performance of the algorithm as a

function of the characteristics of the processed images.
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I. INTRODUCCION

La microscopia 6ptica brinda la posibilidad de examinar
muestras vivas en condiciones similares a las que se encuen-
tran en su estado natural, lo que se ha expandido cada vez
mads a partir de la amplia disponibilidad de nuevas técnicas
de marcado por fluorescencia. A medida que la investiga-
cion bioldgica avanza hacia la escala molecular, las limita-
ciones en términos de resolucién y eficiencia luminica son
cada vez mads estrictas. En la microscopia ptica, la resolu-
cién espacial se encuentra limitada por la longitud de onda
de la luz debido a los fenémenos de interferencia y difrac-
cion. La resolucién que se puede lograr con este tipo de
microscopia se encuentra limitada a aproximadamente 200
nm en la direccién lateral y aproximadamente 500 nm en
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la direccién axial, lo que dificulta el estudio de las carac-
teristicas de un objeto que posean tamafilos menores O se
encuentren cercanas a distancias por debajo del limite de
difraccion del sistema. Al adquirir una imagen de micros-
copia Optica, la sefial proveniente del objeto observado se
encuentra degradada principalmente al proceso de forma-
cion y registro de la imagen. La degradacion producida en
este proceso de formacion de la imagen es determinista y
puede caracterizarse mediante la funcién de dispersion de
punto que se denominard PSF (del inglés point spread fun-
ction). Esta describe la respuesta del sistema 6ptico frente
a un objeto puntual infinitesimal y el ancho de esta PSF es
el que define el limite de resolucién del sistema. La degra-
dacién producida por el proceso de registro de la imagen,
denominada ruido, es una realizacién de un proceso aleato-
rio del cual no es posible conocer a priori su valor, pero se
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pueden asumir propiedades estadisticas. Si el sistema 6p-
tico puede considerarse invariante ante traslaciones, o sea
que la PSF es la misma en cualquier lugar del espacio de
la imagen, se puede modelar la imagen adquirida S como el
resultado de la convolucién del objeto real R con la PSF 1
del sistema 6ptico, mds un término de ruido 1 y un nivel de
fondo constante B

S(r) =R(r)*I(r)+n(r) + B. (1)
El fondo incluye fluorescencia del medio desenfocado o cir-
cundante, cuentas de oscuridad, nivel de lectura o cualquier
otra contribucién aditiva a la sefial explorada. El ruido n
son variaciones aleatorias alrededor del nivel de sefial me-
dida debidas principalmente al mismo proceso de adquisi-
cion. Se desea poder conocer R con una mejor resolucién
que la dada por la respuesta del instrumento.

Existen dos grandes enfoques para mejorar la resolucion
de los sistemas 6pticos. El primero de ellos se basa en modi-
ficar el sistema de tal manera de lograr angostar la PSF del
instrumento [1-4]. La mayoria de estos métodos presentan
desafios en términos de implementacién y mantenimiento,
y a menudo son incompatibles con especimenes bioldgicos
vivos en su habitat natural. El segundo enfoque consiste en
invertir el proceso de distorsiéon mediante técnicas de de-
convolucion conociendo la PSF del sistema 6ptico. Estas
técnicas deben ser optimizadas de manera tal que se asegure
la preservacion de la informacién bioldgica en el resultado
obtenido. La inversién directa en 1 es un problema mate-
matico mal condicionado, ya que debido al ruido es posible
encontrar soluciones que no tienen significado fisico, tales
como valores negativos para la intensidad de la imagen. Pa-
ra obtener una estimacion de R con una precision razonable
y robustez frente al ruido, generalmente se deben utilizar
conocimientos a priori sobre la sefial en cuestién. De es-
ta manera, la estimacién se formula como un problema de
optimizacién que incorpora esta informacién previa.

El desafio de obtener imédgenes de alta resolucion mads
alla del limite impuesto por la difraccién, las aberraciones
y el ruido con una sola imagen fue perseguido durante dé-
cadas mediante la deconvolucién. En [5] los autores exami-
nan varios algoritmos de deconvolucién estdndar como ser:
RIF (del inglés regularized inverse filter), regularizacion de
Tikhonov, Landweber, Tikhonov-Miller, Richardson-Lucy
y RL-TV (del inglés Richardson-Lucy with total-variation
regularization). Estos algoritmos se evaldan para diferen-
tes imdgenes y se implementan en un software de codigo
abierto. El enfoque mas simple para realizar la deconvolu-
cién es la minimizacién de la funcién de costo de minimos
cuadrados que mide la similitud entre la imagen adquirida
y la estimacion. Esto es una inversion directa de la convo-
lucién en el dominio de Fourier, pero tiende a amplificar
el ruido presente en la imagen dando resultados con os-
cilaciones de alta frecuencia no deseadas. Una manera de
evitar la amplificacion del ruido es agregar términos de re-
gularizacién a la funcién de costo, de forma tal que se pe-
nalicen valores no deseados en la solucion. Tikhonov [6],
RIF [7] y Tikhonov-Miller son métodos que incorporan es-
tos términos de regularizacién para convertir el problema
matemadtico en uno bien condicionado. Sin embargo, tam-

poco se logran obtener resultados favorables en la mayoria
de los casos como en el método iterativo de Landweber [8]
que tiende a producir un ajuste excesivo en el ruido cuan-
do el nimero de iteraciones no se elige adecuadamente, o
en Richardson-Lucy [9, 10] que normalmente produce se-
fnales espurias cerca de transiciones bruscas en el contenido
de la imagen (artificios de Ringing) también debidas a la
amplificacién del ruido. Existen métodos iterativos rapidos
que incorporan restricciones de raleza en el dominio wave-
let y donde el problema de optimizacién se resuelve utili-
zando nuevos pardmetros y un operador de umbral suave
[11]. Todos estos términos de regularizacidn siempre termi-
nan siendo un factor amortiguador que suaviza la solucién
reconstruida. Por dltimo, el método RL-TV [12] agrega un
término de regularizacién usando la norma L' para preser-
var las discontinuidades de la imagen. Sin embargo, este
término podria causar artificios si el pardmetro de regula-
rizacion no se elige adecuadamente, produciendo una mala
interpretacion de la estructura bioldgica. Para todos estos
métodos de deconvolucidn, la mejora significativa es la re-
duccién de fluorescencia fuera de foco proveniente de otros
planos cuando el objeto es tridimensional. En cambio, la
mejora en la resolucion lateral resulta marginal y en algu-
nos casos las reconstrucciones muestran artificios debido a
la técnica de deconvolucién utilizada. Existen alternativas
recientes basadas en la teoria Mean Shift, como Mean-Shift
Super Resolution (MSSR) [13]. Fundamentalmente, se uti-
liza para mejorar la resolucién de imdgenes individuales o
en una secuencia temporal mediante el método de fluctua-
ciones de fluorescencia.

En nuestro grupo se ha desarrollado un algoritmo de
deconvolucién con superresoluciéon denominado SUPPO-
Se [14-21]. El método se basa en asumir que la estructu-
ra observada se puede aproximar como una superposicion
de fuentes puntuales de igual intensidad. Al introducir esta
premisa, la deconvolucidn se convierte en un problema ma-
temadtico bien condicionado y es posible obtener soluciones
con superresolucién. El algoritmo SUPPOSe puede aplicar-
se en imdgenes Unicas, mejorando la resolucion del sistema
optico sin comprometer la resolucién temporal de la adqui-
sicién. Este método ha sido implementado y validado para
imagenes adquiridas por microscopia de fluorescencia con-
vencional a partir de muestras en dos dimensiones [19].

En este trabajo se muestra la extension del algoritmo py-
SUPPOSe a estructuras en tres dimensiones, su validacion
en imagenes sintéticas y su aplicacién a adquisiciones expe-
rimentales obtenidas mediante microscopia fluorescencia.
En la Seccién II se introduce el algoritmo SUPPOSe en tres
dimensiones, su funcionamiento y su implementacién. En
la Seccién III se muestran resultados de SUPPOSe obteni-
dos a partir de pruebas realizadas con imdgenes sintéticas
en tres dimensiones. En la Seccién IV se muestran resulta-
dos de SUPPOSe aplicados a muestras experimentales en
tres dimensiones obtenidas mediante microscopia de fluo-
rescencia. Por dltimo en la Seccién V se detallan las mejo-
ras en el algoritmo que fueron necesarias para optimizar el
tiempo de computo y poder procesar estructuras tridimen-
sionales con el método pySUPPOSe.
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II. METODO

Cuando se mide una imagen de microscopia, el objeto
real que se desea observar se encuentra distorsionado por la
PSF del sistema y por ruido intrinseco de la medicién. Las
mediciones en este caso son tridimensionales por lo que se
realizan en forma de pila, es decir, se adquiere una secuen-
cia de imdgenes donde cada una contiene un plano xy de la
muestra correspondiente a una posicién z distinta. Siendo
S la imagen adquirida la misma se puede representar como
en la ecuacién (1). En este caso r € R es la coordenada en
que se realiza la medicion. El algoritmo SUPPOSe asume
que la estructura real del objeto se puede aproximar como
una superposicién de fuentes virtuales con igual intensidad
o, denominadas fuentes virtuales. Utilizando esta aproxi-
macién se puede estimar la estructura real R como

N
R(r)=a) &(r—ay),

k=1

@)

donde a; € R? es la posicién de cada una de las N fuentes
virtuales utilizadas y o es la intensidad, la misma para todas
las fuentes. Por lo tanto, para reconstruir la imagen original
solo se deben encontrar las posiciones de las fuentes vir-
tuales que, convolucionadas con la PSF del sistema, mejor
aproximan la imagen § adquirida. Estas pueden ubicarse en
cualquier punto de R? sin ninguna restriccién. Como todas
las fuentes tienen el mismo valor de intensidad ¢, se logran
reconstruir distintas intensidades en la imagen final median-
te la superposiciéon de una mayor o menor cantidad de estas
fuentes en un drea determinada. Las fuentes virtuales SUP-
POSe y sus posiciones no tienen correlacion real con los
fluoréforos (a diferencia de lo que ocurre en algoritmos de
localizacién de molécula tnica [22-27]), sino que son dis-
tribuidas con el objetivo de aproximar la estructura R de la
mejor manera posible. De esta manera, es posible obtener
una aproximacién de § como

f(r—ak),

M=

S(r) =R(r)*I(r) = o 3)

k=1

donde 7 es la estimacién de la PSF del sistema de medi-
cién. Esta PSF puede ser obtenida de manera tedrica con
los pardmetros del sistema o de manera experimental. Las
posiciones de las fuentes virtuales se estiman resolviendo
un problema de optimizacién minimizando la siguiente fun-

cidén objetivo _
x> =1IS(r) = S(r)[]*,

paraun N y un « elegidos.

De esta manera el algoritmo SUPPOSe debe abordar un
problema de minimizacién en RY x R? sin restricciones
donde la unica incégnita es la posicion de las N fuentes
virtuales a; que pueden tomar cualquier valor en R3. En
general, la minimizacién de funciones tiene el problema de
que es muy probable que se llegue a un minimo local y, de
esta manera, no se logre alcanzar el minimo global, mas ain
teniendo en cuenta la alta dimensionalidad de este problema
en particular. Por ello se utiliza un algoritmo genético. Este
tipo de algoritmos son capaces de evitar los extremos loca-
les y acercarse mds al minimo global a costa de realizar un

“)

mayor nimero de operaciones. El algoritmo genético emula
el proceso de evolucién natural [14].

III. IMAGENES SINTETICAS

Las primeras pruebas de rendimiento se realizaron con
pilas de imagenes sintéticas. Una de las estructuras sinteti-
zadas consiste en dos rectas paralelas con direcciones trans-
versales contenidas en distintos planos xy. Las rectas estdn
separadas por una distancia en z de aproximadamente 200
nm. El resultado SUPPOSe tras procesar la imagen sintéti-
ca respectiva se muestra en la Fig. 2. La visualizacién tri-
dimensional de las coordenadas de la solucién permite dis-
tinguir la estructura general de los datos, pero esta repre-
sentacién es limitada, ya que si se acumulan fuentes en una
misma regién es dificil distinguir informacién de profun-
didad. Por lo tanto, para generar lo que denominamos una
reconstruccién SUPPOSE se convolucionan las posiciones
de las fuentes virtuales con una funcién PSF mucho menor
que la del sistema Optico. La profundidad de cada plano se
encuentra codificada mediante la escala de colores de la ba-
rra de escala. Para cada plano, la intensidad se codifica co-
mo transparencia, es decir, los pixeles de mayor intensidad
(donde se acumulen mads fuentes virtuales) son mas opacos
y los de menor intensidad se ven mds transparentes. Para
una mejor visualizacién se muestran vistas de proyecciones
de la reconstruccion en distintos planos para aportar mayor
informacion.

Para sintetizar y procesar las imdgenes se utiliz una PSF
de tipo haz Gaussiano. Este tiene la caracteristica de ser en
cada plano xy una funcién Gaussiana de dos dimensiones,
pero que a lo largo del eje z va variando su varianza lateral.
La intensidad de esta PSF esta dada por la funcién

I(rz) =1 (ng))zexp(vj;ﬁ, 5)
con w(z)
w(z) = woy |1+ (;)2 6)

donde r es la distancia radial al centro del eje del hazy zla
distancia a la cintura o foco del haz, wq es la cintura del haz
en su punto mds angosto en los ejes x e y respectivamente y
zg es la distancia de Rayleigh, que es la distancia a la que
el haz alcanza una cintura de w(zg) = v/2wo y es calculada

como zg = ﬂ%w‘z’ con n el indice de refraccién del medio y
A la longitud de onda del haz de luz. Se realizaron pruebas
para tres separaciones distintas entre rectas. Referenciadas
al pardmetro Oyja1 de la PSF, las separaciones fueron 420
nm (20,xia1), 210 nm (Oyxia1) Y 105 nm (0.50xia1). Los re-
sultados obtenidos se muestran en la Fig. 1, junto con una
comparativa de los tres casos, donde se puede ver una pro-
yeccién en el plano xz de las coordenadas de las fuentes vir-
tuales de la solucién (en color azul), junto con la estructu-
ra verdadera superpuesta (en color naranja). Los resultados
obtenidos fueron satisfactorios, el método SUPPOSe colo-
c6 las fuentes virtuales en los planos correctos, logrando
reconstruir la separacion correcta entre las lineas en tres di-
mensiones.
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FIG. 1: Comparativa de resultados SUPPOSe para distintas separaciones de rectas transversales referenciadas al valor de 6,4,y de
la PSF. En la fila superior se muestra la proyeccion en el plano xy de las coordenadas de las fuentes virtuales y en la fila inferior la
proyeccion en el plano xz de las mismas, superpuestas con las coordenadas de las fuentes puntuales de la estructura verdadera.

(b)

FIG. 2: Resultados en imagen sintética de dos rectas paralelas con
direcciones transversales ubicadas en distintos planos xy y sepa-
radas 200 nm en el eje z. (a) Coordenadas en tres dimensiones de
las fuentes puntuales de la estructura verdadera. (b) Vista de una
solucion obtenida tras procesar la imagen sintética. Coordenadas
en tres dimensiones de las fuentes virtuales. Y vista en el plano
xy/xz de la convolucion de las posiciones de las fuentes virtuales
con una PSF mucho menor que la del sistema dptico. En este caso,
el tamaiio del pixel de reconstruccion es 5 veces mds pequerio que
el pixel de la imagen sintetizada. Las fuentes virtuales se convo-
lucionaron con una PSF gaussiana con un pardmetro ¢ 6 veces
menor que el pardmetro  de la PSF de sintesis de la imagen.

En la Fig. 3 se muestran, para el caso de separacién 420
nm, distintos cortes de la pila de imdgenes sintetizada y del
resultado SUPPOSE. Se puede observar la mejora obtenida
en laresolucién y la localizacién de las rectas en el eje axial.
Se observa que la solucién SUPPOSE reconstruye las rectas
en los planos correspondientes a z = 700nm y z = 1120am.
Esto da una distancia entre ellos de 420 nm, que es con-
sistente con la distancia en la estructura verdadera. En los
planos restantes se observa que, si bien existe intensidad en
la imagen sintetizada, SUPPOSE no coloca fuentes virtua-
les alli.
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Se realizaron pruebas para evaluar cémo varia el rendi-
miento del algoritmo SUPPOSE ante distintos niveles de
ruido presente en las pilas procesadas utilizando la estruc-
tura de rectas separadas de 210 nm en z. En la Fig. 4 se
muestra la comparacién de los resultados obtenidos para
tres niveles distintos de ruido. Se observa que, a medida que
aumenta el nivel de ruido, aumenta también la dispersién
en la distribucién de las fuentes virtuales alrededor de la
estructura verdadera. Sin embargo, se puede observar que,
incluso para altos niveles de ruido, el rendimiento del algo-
ritmo sigue siendo muy robusto.

Con el objetivo de poner a prueba el método con es-
tructuras tridimensionales complejas, se sintetizaron pilas
de imdgenes cuya estructura verdadera es un elipsoide hue-
co con una distribucién casi uniforme de fuentes puntuales
sobre su superficie [28]. El elipsoide tiene un radio lateral
de 432 nm y un radio axial de 560 nm. Se gener¢ la es-
tructura utilizando 2000 fuentes puntuales con un valor de
a = 100. Las pilas de imdgenes sintetizadas tienen un ta-
maiio de 51 x 51 x 51 pixeles. El tamaiio de pixel lateral es
de 54 nm y el axial, de 35 nm. Para la sintesis se utilizé una
PSF elipsoidal gaussiana con pardmetros Ojateral = 162nm'y
Oaxial = 105nm. En la Fig. 5 se muestra la estructura verda-
dera y la solucién obtenida mediante el método SUPPOSE.
A los gréficos se les ha afiadido un histograma de la dis-
tancia radial desde cada fuente hasta el centro del elipsoide,
con el fin de facilitar la comparacién entre las estructuras.
Se observa que SUPPOSe logra reconstruir el elipsoide con
una distribucién uniforme a lo largo del cascarén. En el his-
tograma de la misma Fig. se puede observar que la distancia
radial de las fuentes al centro del elipsoide es muy similar
a la de la estructura verdadera. Algunas fuentes se encuen-
tran a distancias mayores de lo esperado, pero la cantidad
no es representativa. Para obtener estos resultados, el méto-
do se ejecuto utilizando 3000 fuentes virtuales. El tiempo de
ejecucion fue de aproximadamente 5 horas, utilizando una
PC con procesador Intel Core 17-8700K y placas GPU Nvi-
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FIG. 3: En la fila superior se muestran distintos planos de la pila sintética de las rectas transversales. En la fila inferior se muestra la
reconstruccion SUPPOSe respectiva. Las rectas reconstruidas se encuentran a 420 nm de distancia al igual que las de la estructura

verdadera.
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FIG. 4: Comparacion de los resultados SUPPOSe para las pilas de rectas transversales separadas 210 nm ante distintas condiciones
de nivel sefial-ruido. Se parte de la imagen sin ruido y el nivel de ruido aumenta de izquierda a derecha. En la fila superior se observa
el plano central de la pila procesada. En la fila intermedia se muestra la proyeccion en el plano xy de las coordenadas de las fuentes
virtuales de la solucion y en la fila inferior la proyeccion en el plano xz de las mismas, superpuestas con las coordenadas de las fuentes
puntuales de la estructura verdadera.

dia GeForce GTX 1080 (2560 cores @ 1607 MHz, 8 GB
GDDRSY). En la Fig. 6 se muestran distintos planos en z de
la pila sintetizada y el resultado correspondiente. El método
logra estimar la estructura real incluso en los planos donde
la informacién esté totalmente enmascarada.

Se realizaron pruebas para evaluar el rendimiento del mé-
todo cuando se utiliza una cantidad de fuentes virtuales es-
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casa en comparacién con la 6ptima. Para este andlisis, se
procesé con SUPPOSE la misma pila de imagenes sintéti-
cas de la Fig. 5, pero utilizando 200 fuentes virtuales, mien-
tras que la solucién anterior para esta muestra se obtuvo con
3000. El resultado puede verse en la Fig. 7, donde se obser-
va que SUPPOSE logra definir la estructura distribuyendo
las pocas fuentes virtuales disponibles sobre la superficie
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FIG. 5: Solucion SUPPOSe obtenida tras procesar la estructura
sintética de un cascaron de elipsoide (radio lateral de 432 nm y
radio axial de 560 nm). En la fila superior se muestra la estructura
verdadera, las fuentes estdn distribuidas de manera casi uniforme
en la superficie de la elipsoide. En la fila inferior se muestran
las coordenadas de la solucion SUPPOSe obtenida junto con el
histograma de las distancias de dichas fuentes al centro de la es-
tructura.
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FIG. 6: Comparacion de distintos planos de la pila sintética del
elipsoide (izquierda) y la reconstruccion SUPPOSe respectiva
(derecha).

del elipsoide. Una ejecucién como esta puede ser una alter-
nativa rapida (en este caso llevé 1 hora, es decir, una quinta
parte de la ejecucién completa) para observar y validar la
forma aproximada del objeto que se desea reconstruir, antes
de realizar una ejecucion con la cantidad de fuentes deseada
y que lleve el tiempo completo.
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FIG. 7: Solucion SUPPOSE para la estructura sintética del elip-
soide utilizando una cantidad de fuentes virtuales (200 fuentes)
sustancialmente inferior al valor dptimo. En la fila superior se
muestran las coordenadas de las fuentes junto con el histograma
de las distancias al centro de la estructura comparado con el de la
estructura verdadera. En la fila inferior se muestra la proyeccion
en el plano xy/xz de la reconstruccion obtenida.

IV. RESULTADOS EXPERIMENTALES

Tras analizar el rendimiento de SUPPOSE con datos sin-
téticos, se procedié a poner a prueba el método con da-
tos experimentales procedentes de una muestra patrén. Se
adquirieron imédgenes de una estructura de cintas paralelas
presentes en una muestra de calibracién Argo-SIM [29] de
la marca Argolight utilizando microscopia de epifluorescen-
cia. La estructura de la muestra consiste en una serie de cin-
tas paralelas de altura nominal e = 600 4- 200nm dispuestas
de a pares. Las cintas de cada par estdn separadas una dis-
tancia d, que aumenta gradualmente desde 0 nm hasta 390
nm en pasos de 30 nm. Dado que esta muestra posee una es-
tructura conocida y con gran versatilidad, las primeras prue-
bas de concepto de pySUPPOSe3D en datos experimentales
se llevaron a cabo con dicha muestra. Al estar fabricado con
un sustrato fluorescente con indice de refraccion similar al
del vidrio, se utilizé epifluorescencia de campo amplio pa-
ra adquirir las imdgenes. Se puede ver un diagrama de la
estructura en la Fig. 8. El sistema utilizado para las medi-
ciones permite lograr un tamafo de pixel de 33.9 nm en el
eje lateral y de 32.6 nm en el eje axial. La muestra fue ex-
citada con luz ultravioleta de longitud de onda A = 365nm
y presenta un pico de emisién en A = 460nm. Se utilizé un
objetivo de inmersién en aceite con magnificacién de 60 x
y apertura numérica 1.45. La resolucién tedrica para estos
pardmetros es Riyteral = 158nm y Raxia) = 437nm. Se estimo
la PSF de manera experimental utilizando una muestra de
nanoesferas fluorescentes Termo Fisher TetraSpeck (mode-
lo T14792 [29]) de 100 nm de didmetro, las cuales emiten
en la misma longitud de onda que la muestra Argo-SIM. Se
registrd la emision a lo largo del eje axial de mdltiples na-
noparticulas. Sumando estas contribuciones se obtuvo una
pila de imédgenes correspondiente a la estimacion de la PSF.
La PSF estimada se utiliza de forma directa en la operacién
de convolucién implementada en el algoritmo, mediante la
forma de una tabla de consultas (LUT). Esto ultimo se de-
sarrolla con mds detalle en la Seccién V.
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Se procesaron con SUPPOSe las imagenes de los pares
de cintas separadas 210 nm, 180 nm y 150 nm, por ser las
que se encuentran a distancias similares a la resolucion ted-
rica del sistema. Para ello, se seleccion6 una regién de inte-
rés para cada conjunto de cintas. El tamafio de las regiones
seleccionadas es del orden de 2.20 x 2.37 x 1.53um?. Estas
regiones se encuentran marcadas en la imagen de la Fig. 8.

)
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FIG. 8: Muestra Argolight Argo-SIM. En la fila superior, un dia-
grama esquemdtico de la estructura tridimensional de la muestra
utilizada. En la fila inferior, una de las imdgenes adquiridas don-
de se marcan las regiones de interés procesadas (cintas separadas
210 nm, 180 nmy 150 nm).

SUPPOSE se ejecut6 con 7000 fuentes virtuales y las co-
rridas tardaron aproximadamente 19 horas en completarse.
En la Fig. 10 se muestran los resultados para las tres sepa-
raciones de las cintas procesadas. A la izquierda se muestra
la comparacion entre la imagen central de la pila adquirida
y la reconstrucciéon SUPPOSE. A la derecha se muestra la
proyeccion x, z de esta comparacion.

Se puede observar en las imdgenes adquiridas que la in-
formacién de la distancia entre cintas estd fuertemente en-
mascarada, siendo indistinguible para el caso de cintas se-
paradas a 150 nm. En todos los casos, la solucién SUPPO-
Se logra una mejora en la resolucién y hace que sea posible
definir la separacién entre las estructuras. Se midié la dis-
tancia entre las cintas a lo largo de la direccidn transversal
a la estructura en las reconstrucciones SUPPOSe obtenidas
y se registraron valores promedio de 220 nm, 190 nm y 150
nm para cada caso, que son acordes a los valores tedricos
declarados por el fabricante de la muestra.

En las soluciones SUPPOSe obtenidas, se observa una
acumulacién de fuentes virtuales en el plano central de la
pila. A partir de varios andlisis realizados utilizando datos
sintéticos, se concluyé que este fendmeno se debe a la falta
de informacién en el eje axial de la PSF debido al trun-
camiento de los datos medidos. Se realizaron pruebas con
imigenes de esferas sintéticas variando la longitud axial de
la pila de la PSF utilizada para procesarlas; los resultados
se muestran en la Fig. 9. Los resultados fueron consisten-
tes con lo observado en datos experimentales y marcan un
criterio de decaimiento en la intensidad de la PSF que deter-
mina la longitud éptima de la pila a ser medida. Es preciso

destacar que, a pesar de la falta de informacién de la PSF
en el eje axial, SUPPOSe logra obtener una mejora en la
resolucidn lateral.

V. IMPLEMENTACION DEL ALGORITMO

La operacién de mayor coste computacional que realiza
el algoritmo SUPPOSE es la convolucién, de orden O(n®)
para el caso en tres dimensiones. Esta operacion se repi-
te para cada individuo en cada iteracién con el fin de eva-
luar la funcién objetivo. Esto lleva a que la convolucién sea
la mayor responsable de los tiempos de ejecucién del pro-
grama, alrededor del 95 % del tiempo de cémputo total. El
cddigo SUPPOSE fue escrito en Python (pySUPPOSE) e
implementa la convolucién en tarjetas graficas (GPUs) uti-
lizando la plataforma CUDA de Nvidia. Esta implementa-
cién reduce notablemente el tiempo de la convolucién en
comparacion con la utilizaciéon de una CPU. En el contex-
to de datos en tres dimensiones, el proceso de carga de la
informacién de la PSF del sistema representa un desafio
significativo. Para esto se implementd la convolucién por
tabla de consulta o LUT. Se trata de una estructura de da-
tos que permite sustituir toda una rutina o cdlculo por una
indexacién de una tabla. De esta manera, es posible poseer
datos precalculados a los que el programa puede acceder ré-
pidamente en lugar de efectuar la operacién una y otra vez.
En este caso, la PSF se carga como una LUT, de manera
que se utilice la informacién de la tabla en la operacién de
convolucion. Esta mejora no solo permite reducir atin mas
los tiempos de cémputo, sino que también permite utilizar
PSF no analiticas precalculadas o adquiridas directamente
del sistema Optico. Para cada fuente virtual, se interpola la
PSF obtenida de la tabla para centrar la funcién en esa posi-
cion. Este proceso se repite para todas las fuentes virtuales
y, al ir sumando la contribucién de cada PSF, se obtiene la
imagen final que se utilizard para evaluar la funcién obje-
tivo. Como este proceso debe repetirse para cada fuente, el
coste computacional aumenta linealmente con el nimero de
fuentes virtuales utilizadas.

EnlaFig. 11 se exponen los resultados de la comparacién
de tiempos de la convolucién en funcién de la cantidad de
fuentes y de la cantidad de pixeles de la imagen para el caso
de ejecuciones realizadas en CPU, GPU y GPU+LUT. Se
observa que hay grandes saltos de rendimiento tanto entre
CPU y GPU como entre GPU y GPU+LUT. Es importante
sefalar que todas estas pruebas fueron realizadas para imé-
genes en dos dimensiones.

VI. CONCLUSIONES

En este trabajo se logré ampliar el método pySUPPO-
Se a estructuras tridimensionales. Para ello, se optimiz6 el
algoritmo, permitiendo superar el desafio que suponia en
cuanto a capacidad de cémputo a través de la convolucién
por tabla de consulta o LUT. El método fue puesto a prueba
con estructuras sintéticas de distintas geometrias y estruc-
turas experimentales de dimensiones conocidas, obteniendo
resultados satisfactorios. Es relevante destacar que, incluso
en condiciones de medicidn desafiantes, como un alto nivel
de ruido o una escasa cantidad de fuentes virtuales elegidas,
la solucién SUPPOSe logra reconstruir la estructura subya-
cente. Se observd que es fundamental contar con un rango
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FIG. 9: Andlisis de la influencia del truncamiento de la PSF en el resultado obtenido. En la fila superior se muestran las distintas PSF
utilizadas para el andlisis. En la fila inferior se muestran los resultados SUPPOSe obtenidos para los distintos casos.
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FIG. 10: Comparacion entre las imdgenes adquiridas y la recons-
truccion SUPPOSe para las tres separaciones entre las cintas pro-
cesadas. A la izquierda se muestra la comparacion entre la ima-
gen central de la pila adquirida y la reconstruccion SUPPOSe. A
la derecha se muestra la comparacion entre la proyeccion axial en
el plano x,z

axial de la estimacién de la PSF que asegure un decaimiento
de intensidad al menos del 2 % respecto a su valor maximo,
con el propoésito de evitar artificios de aglomeracién en el
plano central de la pila de imdgenes adquiridas.
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