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During their operation, due to shifts in environmental conditions, devices undergo various forms of detuning from their
optimal settings. Typically, this is addressed through control loops, which monitor variables and the device performance,
to maintain settings at their optimal values. Quantum devices are particularly challenging since their functionality relies
on precisely tuning their parameters. At the same time, the detailed modeling of the environmental behavior is often
computationally unaffordable, while a direct measure of the parameters defining the system state is costly and introduces
extra noise in the mechanism. In this study, we investigate the application of reinforcement learning techniques to
develop a model-free control loop for continuous recalibration of quantum device parameters. Furthermore, we explore
the advantages of incorporating minimal environmental noise models. As an example, the application to numerical
simulations of a Kennedy receiver-based long-distance quantum communication protocol is presented.
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I. INTRODUCTION

Calibrating an experimental apparatus is a primitive and
ubiquitous task in most areas of science and technology. In
turn, sensor and detector devices constitute the way to ex-
tract information about the environment surrounding us and
better understand reality via further post-processing of the
acquired data. Thus, fully calibrating experimental devices
is a primordial task and, in turn, an active research topic
[1-11]. In this manuscript, we study the recurrent calibration
of devices whose deployment environment is challenging
to be modelled. Examples of this are scenarios that heavily
vary with time in a way that is hard to predict, e.g. turbu-
lent atmosphere [12-17], hydrological models [18, 19] or
non-isolated magnetometers [20, 21] among many others.
For such settings, where state-of-the art technology is being
used to push forward the boundaries of scientific discove-
ries at a considerable resource overhead, it is of utmost im-
portance to develop techniques that are ready to adapt the
device configuration to the experimental condition at hand.
In this regard, a plethora of artificial-intelligence techniques
have recently been developed in the context of sensor ca-
libration [1, 2, 8, 22-29], change-point detection [30-32]
and malfunctioning device identification [33-38]. Our main
contribution is to provide a framework for re-calibrating
quantum devices. Based on this, we present the method ap-
plied to a quantum-classical long-distance communication
by laser pulses, e.g. satellite-ground or optical-fiber com-
munication. Overall, the success of most machine-learning
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(re)calibration schemes considered in literature rely either
on perfect knowledge of device’s functioning condition, ac-
cess to huge amount of data for training purposes or limiting
the dynamics of the system. Such assumptions constitute
a double-edged sword when deploying the device on (po-
tentially adversary) experimental conditions: while correct
configurations can be granted if the machine-learning mo-
del was trained on data resembling the experimental condi-
tions, there is a high probability of remaining off-calibrated
otherwise.

Here, we depart from such a notion of similarity between
training and deployment scenarios, by considering a hybrid
scheme consisting of a pre-training round complemented
with a reinforcement-learning stage. The latter fine-tunes
the configuration, so the device can be adapted to the speci-
fic (and potentially unexplored) experimental conditions at
hand; this is done by modifying device controls, as shown
in Fig. 1.

The success of our method hinges on the capabilities of
devising an approximate model of the setting’s dependence
with respect to changes in its surroundings (which we in-
distinctly call environment). Such approximate model is to
be thought as a simplified description of the environment,
e.g. captured by very few variables. While not expected to
be fully accurate — not retrieving the exact device confi-
guration for each specific experimental condition—, it shall
be thought of as ansatz for controls initialization. The ac-
curacy of this initialization relies on the capacity of the
approximated model to capture relevant features of devi-
ce behavior given the experimental condition at hand. As
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a rule of thumb, the more complex such ansatz, the mo-
re accurate the description is expected to be. However, a
trade-off rises; While more complex models tend to be data-
consuming until reaching optimal calibrations, tailoring the
model to specific experimental conditions will inherently
induce a bias towards a sub-set of deployment scenarios.
Thus, the goal of the pre-training round is to suggest control
initialization values by using a small number of quantities
that can easily be estimated out of few experiments. The
control values are then improved by means of a comple-
mentary reinforcement-learning method, which adapts the
control values to the specific experimental condition in a
model-free way. On top of the calibration mechanism, the
value of a decalibration witness is continuously monitored
during deployment, which allows the agent to experimen-
tally detect that the device entered an off-calibration sta-
ge, and thus re-initiate the calibration process. This work
is a step further towards developing a fully automatic re-
calibration of quantum detectors through machine-learning
techniques. Importantly, we remark that neither the frame-
work nor the method is specially biased towards the quan-
tum realm, and can potentially be applied to other control
problems beyond the quantum-technology scope.

The manuscript is structured as follows. In Sec. II we
present our re-calibration framework and described our
method. In Sec. III we numerically analyze the performance
of our re-calibration method in an emblematic long-distance
quantum communication setting. Conclusions and future
work are outlined in Sec.IV

II. The re-calibration framework

We consider a device whose controls are defined by con-
tinuous parameters 8 = {0y, ..., Oy }. As shown in Fig.1, our
setting is a black-box device controlled by different knobs
k=1,...,M, each associated to a control value 6;. In the
following, we define several quantities of interest.

\\\\\\u\ iy,

///

FIG. 1: We depict a device that needs to be calibrated. Here, the
apparatus is controlled by different knobs defined by values 6 =
{61,...,00m}, and the aim is to tune such parameters in a way that
the device is configured to optimally operate under experimental
conditions &.

Device configuration. A fixed set of parameter values 0
completely defines a device configuration.

Score function. The quality of a device configuration 0 is
evaluated by a score function Sg(0). The value of the sco-
re function can be estimated—during a calibration stage—
by means of N repeated experiments; each experiment i in-
volves a quantum measurement and leads to a measurement
outcome n;, whose value is generally of stochastic nature.
Here, the full underlying model needed to describe outco-
mes probability distributions is denoted by &, and generally
involves an accurate description of noisy channels present

in the setting at hand.

Effective score function. The underlying model & is ge-
nerally inaccessible to the calibrating agent, and hence shall
assume to be unknown to it. This is motivated by the fact
that: (i) time-varying deployment conditions can be funda-
mentally hard to model, and (ii) even in the case of having
full control of experimental conditions, quantum channel-
tomography comes with a considerable sample overhead,
implying that the total number of experiments and parame-
ters required to reach near-optimal environment modelling
(plus device calibration) would grow exponentially or be
otherwise constrained to specific scenarios [39-42]. On the
contrary, we do assume that a certain relationship exists bet-
ween the frue score function Sg(0) and its effective version
57(8), e.g. an effective model & used by the agent is in-
deed able to capture certain relevant features of the score
function. Effective models should be thought as an enhan-
ced control initialization strategy. This notion applies for
the case in which the device enters an off-calibration stage,
and new control values should be found.
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FIG. 2: Single-parameter device example. Top panel: the optimal
calibration score Sg(0) is shown (dashed-red vertical line), and
its effective value S 3(0) (blue-dashed vertical line); while subop-
timal, this value is further fine-tuned by means of a model-free
scheme (see main body). Bottom panel. We show score functions
Sg and Sg before and after a change-point occurs in the environ-
ment. As a consequence, the device optimally configured under &
needs now to be re-calibrated to the new optimal configuration for
é1.

Reinforcement Learning (RL). The setting described abo-
ve can be framed in the RL language [10, 22, 43-46]. , whe-
re an agent repeatedly interacts with an environment in or-
der to maximize a reward function, during different episo-
des. Here, at i episode (experiment), the agent selects pa-
rameter values 0, observes measurement outcomes n;, and
finally post-processes them in order to provide a claim for
the underlying task the quantum device is used for. Based
on the accuracy of this final action, the agent is given a re-
ward signal, which uses to improve its estimate on how va-
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luable the decisions performed were. In RL, this is captured
by the so-called state-action value-function Qp(s,a) [10],
standing for the expected reward when departing from sta-
te s and taking action a (i.e. either selecting parameters 6
or providing a claim based on the outcomes acquired [10,
43]), and following decision criteria — or policy— 7. For
an optimal device usage, the agent shall choose configura-
tions 0 leading to a maximum score S (). Nonetheless,
since & is not available to the agent, value functions need to
be estimated out of several experiment repetitions. Impor-
tantly, the agent’s strategy is optimized solely based on the
rewards acquired during learning. Here, not only such re-
wards are a way to estimate value-functions, but also serve
as a lighthouse for the agent to navigate the decision lands-
cape, allowing a model-free calibration of the device. We
provide further details on how model-free calibration works
in Appendix A.

As an example, we consider a single-control device, who-
se score function Sg(0) is schematized in Fig. 2. A model-
free agent would initially set the parameter 6 at random and
consequently estimate its score function out of repeated ex-
periments. On the contrary, keeping an effective model &
can readily help the agent to improve such initialization
strategy. Here, the agent’s internal model Sz(0) serves as
an ansatz for the underlying behavior of score Sg(0) w.r.t.
the control 6. Intuitively, the internal model & is expected
to be easier to estimate out of few experiment repetitions.

RL methods have recently been applied to a wide variety
of quantum technology scenarios, among them calibrating
a quantum communication setting [10, 11, 47-51], optimi-
zing quantum pulses [22, 52-54], quantum gated-circuit la-
yout [55, 56], and even graph-processing applications [57],
to name a few. However, little has been investigated in the
capabilities of the learning model to adapt the calibration to
changes in the environment & happening while the device
is being used, e.g. in the deployment stage [58, 59]. In Fig.
2 (bottom) we exemplify how a change in the environment
would affect the score function, requiring a recalibration. In
order to detect the new landscape, we can consider that the
new observations will be different from the ones predicted
by the previous exploration. Thus, having indications about
changes in the environment even during off calibration sta-
ges.

Decalibration witness. In order to realize that a change
occurred in the environment, the agent must rely on an ex-
perimentally accessible quantity, which we define as deca-
libration witness and denote with ;. By monitoring the
behavior of #,; over different experiments, the agent can
readily detect whether a change-point occurs in the environ-
ment and thus re-start the calibration routine if anomalies
are detected. Examples of potential decalibration witnesses
are estimates of outcome probabilities, which the agent can
straightforwardly construct from the information acquired
during previous experiments.

Automatic re-calibration. The definitions outlined above
set a framework to analyze the recurrent calibration of a de-
vice. We now turn to describe our automatic re-calibration
method, which makes use of effective score functions, RL
routines and decalibration witnesses. Here, we picture a sce-

nario where the device is to be initially calibrated and, while
it is being deployed, the device enters an off-calibration sta-
ge which needs to be compensated. The quality of a given
configuration is measured by a score function — which in
turn depends on the current experimental conditions—; the
maximum of the latter encodes the solution to the problem
for which the device is being used for.

For instance, in a communication setting, the device con-
figuration is defined by the encoding-decoding strategy (e.g.
the quantum measurement performed to decode informa-
tion out of the incoming signal), and the score function is
given by the success probability of the protocol. Alterna-
tively, in variational quantum computing applications [60,
61], i.e. the VQE algorithm [62], the device configuration is
defined by the free parameters of the parametrized quantum
circuit and the score function is given by the energy lands-
cape, which needs to be estimated out of several repetitions
of an experiment. The initially-optimal configuration can be
attained by model-free RL schemes [10, 52], i.e. trial-and-
error learning mechanisms. In this approach, the score fun-
ction is typically estimated from the rewards acquired from
each device configuration, e.g. by an empirical estimation
of its value functions (see Appendix A). In this work, we
depart from this concept by initializing the value function
estimates to a surrogate quantity, defined by the effective
score function Sz(0); such quantity is to be estimated out
of a few experiment repetitions, and serves as an ansatz for
which score value is assigned to a given device configura-
tion (see Fig. 1 for a schematic representation).

The usage of effective score values is motivated by the
fact that experimental conditions might not dramatically
differ from the ideal case. For example, the VQE energy
landscape shall preserve certain similarities between a noi-
seless scenario and a noisy one, assuming the noise strength
is sufficiently low [63]. From this informed initialization
of value-function estimates, we then exploit the model-
free features of traditional RL algorithms, which allows the
agent to fine-tune the device configuration, adapting it to
specific deployment conditions.

The mechanism described above constitutes the calibra-
tion stage, in which the actions performed by the cali-
brating agents can be rewarded according to their accu-
racy/correctness. With the initial calibration task accom-
plished, the device is then deployed, e.g. used without the
necessity of rewarding the agent. As experiments proceed,
it is to be expected that the device undergoes a decalibra-
tion, e.g. experimental conditions might eventually vary. In
order to detect such a change occurs, the agent controls the
decalibration witness #,; —for example measurement out-
come probabilities —, which is used by the specific change-
point detection protocol the agent keeps. Thus, by monito-
ring #,, the agent can detect that the device entered into
a decalibration stage, e.g. the deployment conditions have
changed. As a consequence, the new optimal configuration
is a different one, and a re-calibration is carried out. This is
done similarly to the initial calibration stage: the effective
model configuration landscape is estimated out of few ex-
periments, and the model-free RL algorithm is then used to
adjust the configuration to the new optimal one.

T. Crosta / Anales AFA Vol. 36 Nro. 4 (Diciembre 2025 - Marzo 2026) 95 - 105 97



The effective model used by the agent Sz(0), along with
the decalibration witness %, and the RL algorithm (e.g.
search strategy, value functions, reward definitions), defi-
ne a re-calibration strategy. However, each of the strategy
components requires the agent to pre-set a number of hy-
perparameters. Among them, the number of experiment re-
petitions needed to estimate effective-model configuration
landscape (which we denote as Negr), the number of expe-
riments needed to fine-tune the configuration using a RL
method, denoted as N,;, the undecision region for which va-
lues that take #; will not lead the agent to re-activate the ca-
libration routine, and the parameters defining the behavior
of the RL routine, whose nature depends on the particular
algorithm used. In order to help with notation, we will com-
prise all such parameters by &; in Algorithm 1 a pseudo-
code of our re-calibration method is provided. In the fo-

Algorithm 1: Automatic re-calibration method.
input :S:(0), #;, &, RL-algorithm
output: 8" (optimal configuration)
Calibration stage by Sz(0)
Fine-tuning by RL
Deployment stage
while %, retrieves normal do

deploy device

if #; retrieves anomaly then

| return to step |

= T R U R SR

llowing, we showcase the re-calibration method introduced
above in a canonical example for long-distance classical-
quantum communication. We stress that our method can be
applied to a wide variety of scenarios, not necessarily cons-
trained to the quantum technology realm.

II1.

As an application example, we consider the binary
coherent-state discrimination, which is a primitive used in
long-distance classical-quantum communication. The usa-
ge of quantum resources is expected to boost long-distance
communication rates [64, 65]and provide unconditional se-
curity [66]. Optimally performing quantum-state discrimi-
nation is of utmost importance to reach capacity rates [67,
68], and the binary coherent-state discrimination problem
currently stands as a canonical problem both from a theore-
tical point of view [69-72], as well as an experimental one
[11-13, 15-17, 73-78]. The interest on this problem lies on
the fact that the optimal quantum measurement to be do-
ne by the receiver can be implemented sequentially, com-
bining linear optical operations and feedback operations,
which constitutes an experimentally friendly setting.

In this setting, the sender encodes a bit k = 0,1 in the
phase of a quantum coherent-state |(—1)*a), which is sent
to the receiver; e.g. the signal is prepared in an orbital space
(satellite) station, travels through the atmosphere and arri-
ves to a receiver, in a ground-earth station. The latter per-
forms a binary-outcome quantum measurement, leading to
measurement outcome n € {0, 1}. With this information, the
receiver provides a guess k on the value of the bit transmit-
ted, and the quality of such protocol is given by the success

Illustrative example and numerical development

probability. Such a quantity represents the score function
S#(0) introduced in Sec. II, and depends on the intensity
|a|? of the transmitted states, the quantum channel acting
over which the communication takes place, and the specific
quantum measurement that is performed by the receiver.

Among all possible quantum measurements that the re-
ceiver can implement, we will here focus on the Kennedy
receiver [79] , which consists in displacing the incoming
signal by a value 6 and measuring the resulting state via
an on/off photo-detector, as schematized in Fig. 3. While
the optimal quantum measurement is given by the Dolinar
receiver [70, 76] , which involves complex conditional mea-
surements ultimately leading to difficulties in experimental
implementations [73, 74], the Kennedy receiver can readily
beat the standard quantum limit [80] and essentially consti-
tutes the main building block of the former one.

In this example, the device configuration is defined by
(i) the parameter 0 in the displacement operation, and (i)
a guessing rule which associates the measurement outco-
me n to the guessed value of the initially transmitted bit
k. We note that access to the score value (success probabi-
lity) is granted only in cases where the transmission channel
and device functioning have been perfectly characterized.
Such is not often the case, as atmospheric conditions turn
to strongly vary unpredictably, a fact that ultimately affects
the transmission performance [11-13, 15-17, 77].

+a)—06

O
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©

FIG. 3: Diagram of a Kennedy receiver; this consists in applying
a displacement 0 to the incoming signal and measure it with an
on/off photo-detector.

We now revisit the re-calibration framework introduced
in Sec.II for the Kennedy receiver. As stated above, the sco-
re function S#(0) is given by the success probability of the
communication protocol, which depends on the displace-
ment value 6, and the guessing rule k(6,n). Note that if ac-
cess to the outcome probabilities is granted, then the agent
would perform a maximum-likelihood guess. However, in
situations where such probabilities are not available, e.g. no
model of transmission channel, then the agent needs also
to learn the optimal guessing rule. Thus, we remark that
the score function is dependent on the specific transmis-
sion channel acting between sender and receiver, and po-
tentially differs from the noiseless success probability, i.e.
identity channel acting in between parties. The latter quan-
tity constitutes in our approach the effective score Sz(0).
Here, the intensity |o|? is initially estimated using Negr ex-
periments, where the displacement value 6 is set to zero,
and thus the outcomes probabilities can readily be linked to
o through the Born rule, p(n = 0|(—1)ka) = e~ 1D @,
with Yo, p(n = i|(—1)*at) = 1. Outcome statistics are
used to estimate the signal intensity, which in turn serves as
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a way to initialize the state-action value functions {Q(90),
O(k;n,0)} to the success probability of setting displace-
ment O and conditional probabilities of having k given ob-
servation n and displacement 6 respectively.

The aforementioned quantities are consequently used by
a Q-learning agent, which fine-tunes the calibrating strategy
to the experimental conditions at hand; this is done by pro-
viding a binary reward to the agent according to the correct-
ness of its guess k, and it can be proven that such scheme
converges to the optimal device configuration [10]. The Q-
learning method is applied for N,; experiments, and then the
receiver is deployed. While in deployment stage, the agent
monitors the measurement outcome statistics, by keeping
track of a running average. This quantity serves as a deca-
libration witness %, and abrupt changes of this quantity
indicate that a change-point has occurred. When the system
is out of the expected region (specified by the agent), the
calibration protocol is re-started.
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FIG. 4: Recalibration and learning curve. (Top): Learning cur-
ve evolution. Running average of the reward acquired using 10°
experiments, and the evolution of the decalibration witness ¥y es-
timated by measurement statistics. As can be seen in the change-
point, the Witness presents a big fluctuation, starting a recalibra-
tion of the system until the agent converges to the optimal reward.
(Bottom): Update of the Q-values curve (left) and evolution of
agent’s greedy strategy, i.e. the configuration the calibrating agent
would choose at each experiment (right).

Malfunctioning device example. We now consider the ca-
se in which the Kennedy receiver is initially calibrated to
its optimal configuration, with a pre-defined intensity value
|atg|?, deployed to ideal conditions for such initial environ-
ment &y, and incurs into a decalibration. The new environ-
ment & consists in a different intensity value | |* of the
signals arriving to the receiver, plus a faulty displacement.
Here, the value 0 the agent fixes, actually displaces the sig-
nal by a value A0, with A > 1 being an unknown parameter.
The effect of this faulty behavior is to make displacements
bigger than expected, shifting the value of the optimal confi-
guration 8*. As a consequence, the score-function landsca-
pe gets modified. We remark that the malfunctioning beha-
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vior is unknown to the agent, who first loads the Q-values
for the ideal case using its effective model Sz(0), and then
fine-tunes them by Q-learning; further details on the imple-
mentation are provided in Appendix A.

In Fig. 4 (top) we show the learning-curve of the agent
in terms of cumulative reward acquired. The decalibration
witness # is taken to be an estimate of the outcome pro-
bability p(n = 1), and by monitoring abrupt changes in this
quantity, the agent is able to detect the environment shift
&y — &1. The change point in which the device enters a
malfunctioning stage occurs at experiment 5 103, and can
readily be seen in the top panel of Fig. 4 by the change
of #; behavior. Additionally, this can be detected by an
abrupt change in the cumulative reward acquired; however,
we note that such quantity is potentially not available du-
ring deployment stage. As a consequence, the agent uses
its change-point detection strategy to re-activate the calibra-
tion protocol again, by estimating the new signal intensity
and initializing the Q-values in the effective model obtained
thereby. Note that in this new scenario, the effective model
does not coincide anymore with the underlying truth. This
fact is illustrated by the initial and final Q-values obtained
by the agent, shown in Fig. 4 (bottom), where we additio-
nally show the optimal configuration 6* suggested by the
agent at a given experiment.

IV. Outlook & future research directions

In this work, we presented a re-calibration framework,
accompanied by an automatic re-calibration method, and
targeted to quantum technology applications.

We illustrated the proposed method by studying a Ken-
nedy receiver under heavily varying deployment conditions.
As in any device, decalibration is a frequent problem that
needs to be addressed. This example serves as a test-bed for
our automatic re-calibration framework, showing that not
only the calibrating agent is able to configure the device in
a semi-agnostic way, but also to detect situations in which
the device gets off-calibrated. Our mechanism allows for
the automation of the re-calibration process and can readily
be applied to a wider scope, even beyond quantum techno-
logy applications.

Specifically, our technique reduces the number of expe-
riment repetitions needed to (re)-calibrate the device. This
is done by making use of an effective model, whose pur-
pose is to capture main features in the configuration lands-
cape, and is complemented by model-free reinforcement-
learning techniques. Additionally, we introduce the decali-
bration witness statistic, which plays a key role in detecting
either novelties or anomalies referring to the device’s fun-
ctioning. Such quantity is conceived as a figure of merit to
be calculated during device deployment. In this stage, the
score function for the quality of the controls that are cho-
sen by the agent is not computable, and the agent can only
rely on information available in the experiment, e.g. statis-
tics from the measurement outcome.

A plethora of change-point/anomaly detection methods
can be used in order to complement our method [30-32,
81-83]. However, let us remark that an alternative to moni-
toring the decalibration witnesses can also be brought to at-
tention, i.e. by presetting a calibration control routine. Such
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scheme demands balancing between device deploying and
guaranteeing that the optimal configuration is being kept,
and can potentially be implemented by allowing interme-
diate calibration stages in between deployment. We remark
that while model-free RL techniques could potentially adapt
the controls to smooth changes in the optimal configuration
(without the necessity of an effective model nor a decali-
bration witness), abrupt changes would in practice corrupt
a successful adaptation. Here, an abruptness notion is un-
veiled when it comes to environment changes: on the one
hand we identify continual reinforcement learning [84, 85]
(where the calibration agent smoothly adapts the configura-
tion as the environment smoothly varies), and on the other
hand domain adaptation in reinforcement learning [86, 87]
(where the calibration needs to be adapted under changes
of abrupt nature, as the ones considered in this paper). The
setting studied in here might also be tackled from an acti-
ve learning framework [88], in which the agent may inject
prior knowledge on the different conditions in which the
device is expected to be deployed, and can potentially be
used to further exploit the symbiosis between model-free
and model-aware routines considered above.

A straightforward extension of settings where our re-
calibration framework finds real-world implementations is
given by Noisy Intermediate-Scale Quantum (NISQ) devi-
ces, where the strong presence of noise severely limits the
scope of applications, and developing tools to address such
issues is an active area of research.

Furthermore, our work opens the door for several follow-
up implementations and enhancements of the re-calibration
protocol. Among them, usage of more sophisticated RL
methods [43, 89] and inspecting the possibility of a coherent
re-calibration by usage of quantum correlations [90, 91].
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A. Additional details in the RL implementation

In the following, we briefly present the Reinforcement
Learning (RL) framework and provide further details on
the illustrative example considered Sec. III. Moreover, we
briefly analyze an alternative noisy scenario where a chan-
ge of priors occur, and benchmark our techniques with a
standard Q-learning method.

Reinforcement Learning is based on the sequential inter-
action between an agent and the environment during several
episodes [43]. Each episode E consists on steps ¢t = 1,...,T
(where T is potentially of stochastic nature). At step ¢, the
agent observes a state s;, and follows a policy 7(a;|s;) =7
in order to choose an action a;. As a consequence, the
agent receives a reward r; 11 and transitions to the next sta-
te s;+1. The goal of the agent is to maximize the reward
acquired during episodes, which is accomplished by per-
forming the optimal policy. To do this, the agent has to
exploit valuable actions but also explore possibly advanta-
geous configurations, leading to an exploration-exploitation
trade-off. The framework allows for intermediate rewards
appearing during the episode, and hence the return is defi-
ned as G; = ZZ;(; Y*r k11, with ¥ < 1 being a weighting
factor. The latter is a quantity that depends on the sequen-
ce of state and actions visited during each episode, and its
average value — the so-called state-action value function—
Ox(s,a) = EzG;|s; = s,a, = a indicates how valuable ac-
tion a is by departing from state s and following policy ©
thereafter. In this setting, the optimal policy ©* is obtai-
ned by finding the maximum Q-value for each given state,
a problem that is reflected by the so-called optimal Bellman
equation [43, 92].

In this regard, the Q-learning algorithm is a model-free
method that exploits the structure of Bellman equations by
linking them to contractive operations and shifting the po-
licy towards the fixed point associated to the optimal Bell-
man operator [93, 94]. In order to find the optimal Q-values
O*(s,a) = Qz+(s,a), the algorithm updates the Q-estimate
as

Q(Shat) ~ (- A'E)Q(staat) +Ae (Vz+1 + ijlXQA(SHhG/))

e))
with Az an episode-dependent learning-rate; in Alg.2 we
sketch the Q-learning pseudo-code. Here, the agent explo-
res the state-action space by committing to a €-greedy po-
licy 7, defined as selecting a random action with probabi-
lity £, and the one maximizing the current state-action value
estimate Q(s,a) otherwise. Note that (i) such greedy action
might potentially be suboptimal option, and (ii) a schedule
for € is set in practice, in order to balance between explora-
tion and exploitation [10, 43, 95].

We now turn to provide additional details on the numeri-
cal implementation for the Kennedy receiver considered in
Sec. III. Our code is open-sourced and can be found in Ref.
[96]. All hyperparameter values used in this implementation
are given in Table 1.

Decalibration witness. In order to detect changes in the
environment during an off-calibration stage, the running
average output of the detector is computed across expe-
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Parameters | Meaning Proposed
method

3000

Q-
learning
3000

check
jump
threshold

How much re-
peated selection
of the maximum
is considered
conversion.

S How much the
change in %, has
to be in order to
recalibrate.

& Minimum explo-
ration of the agent.
Rate of change for
E.

A How much do we
want to deviate
from a uniform
distribution.

Ay, Step from which
the learning rate
starts

0.1 0.1

0.05 0.1

Ae 0.9 0.9999

50 0

150 1

TABLA 1: Hyperparameters used in the numerical examples with
a description of its interpretations.

Algorithm 2: Q-learning pseudocode.

1 for episodeE=1,..do

2 initialize sg

3 for step t in episodeE do

4 choose a; ~ ¢

5 get 1, Sr+1

6 update Q(s;,a;) using Eq.1.

riments £ = 1,...,Negr, where we set Neg = 1000, e.g.
%<E) = ﬁ):fﬁg n;—;. At each experiment, the difference
between the current average and the previous one is com-
puted | #,F — #;£7"|. Here, if this difference is bigger than
the (hyper)parameter § — and assuming the device is being
deployed — the re-calibration process is restarted.

Effective model. When the (re-)calibration is initiated, we
consider an effective model given by the success probabi-
lity of a noiseless Kennedy receiver, computed by first es-
timating the signal’s intensity |a|?>. Such success probabi-
lity can be linked to the optimal Q-values for an ideal envi-
ronment &y in which the device functions correctly [10].
To this end, the displacement value in the Kennedy re-
ceiver is set to zero during Neg = 1000 experiments, and
the intensity |a|? is estimated as per |®|> = —In(p(n =
0’ o))+ ﬁ Consequently, the Q-learning agent fine-tunes
the device configuration, which is potentially deployed
under an environment whose score function differs from
the noiseless effective-model here considered. Importantly,
the Q-values are initialized to Qf (6) and Q%(6,k) as
per QF(6) = ¥,_(0,1} mix;_o , O%(6,k) and QF(6,k) =
Le-I-1faroP 4 | (1 — efufl)“‘awﬁ)

Q-learning hyperparameters. We scheduled the explora-
tion rate of m, as per €g = mdx (&, EgA¢), with &,A, €
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FIG. 5: We show the average internal strategy of 25 calibrating
agents to fine-tune the device configuration under a change-of-
prior scenario. Specifically, we depict the Q-values (left panel)
from the effective model, and the ones obtained after RL fine-
tuning. In the right panel, we show the evolution of agent’s greedy
strategy.

[0,1) and &_o = 1, e.g. it is reduced over different epi-
sodes. Here, & provides the minimum exploration level,
while Ag gives a rate of change in the exploration. On
a different note, we modify the uniform sampling in 7

by p(al0) = Li/}/exp (—A |Q(d*) — Q(&)|2>; where L/V isa
normalization factor, Q(a) is the current Q-value estimate,
a* is the associated greedy action, and A an importance-
sampling parameter (A = O returns a uniformly random dis-
tribution) [43]. Finally, the Q-learning learning-rate Ag in
Eq.(1) is set to decay as ~ 1/E, where we recall that E is
the episode number. Note that because of the initial infor-
mation obtained by setting the effective model, we allow
the learning-rate to take smaller values as per ﬁ, where
A; can be understood as how much the effective model is
trusted by the RL agent.
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FIG. 6: Re-calibration learning curve. We show the mean inter-
nal strategy of 25 reinforcement-learning agent’s, to optimize the
device configuration, (top) using a faulty displacement and (bot-
tom) a change of the prior probability. Specifically, we depict the
Q-values (left panel) obtained by trial and error and the evolution
of the greedy strategy (right panel).

Change of priors example. To test the resilience of the
method to a different noise source, we here analyze the si-
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tuation in which a change of priors occurs. We recall the
prior constitutes the probability p; of sending the clas-
sical bit k, and in this example it gets modified as per
Pk — Pe(A2) = 5 + (—1)*A,, where 2, stands for the noise
parameter, unknown to the agent. The results of our auto-
matic re-calibration method for this scenario are show in
Fig. 5. Here, we average the results over 25 instances obtai-
ned through random initializations, taking 10 experiments
to find the optimal configuration in %90 of the runs and
7 x 107 to finish.

Comparison with Q-learning: Finally, we compare the
technique introduced with the standard Q-learning method
[10]. The results are benchmarked in Fig 6, under the noisy
scenarios previously considered. As shown in the figure,
traditional Q-learning presents higher fluctuations over the
Q-value estimates, requiring 10x the amount of experi-
ments than the method introduced in this paper, which ex-
ploits the usage of an effective model.
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