
[44] A. Dawid, J. Arnold, B. Requena, A. Gresch, M. Płodzie´
n, K. Donatella, K. A. Nicoli, P. Stornati, R. Koch, M. Büttner, R.
Okuła, G. Muñoz-Gil, R. A. Vargas-Hernández, A. Cervera-Lierta, J. Carrasquilla, V. Dunjko, M. Gabrié, P. Huembeli, E. van
Nieuwenburg, F. Vicentini, L. Wang, S. J. Wetzel, G. Carleo, E. Greplová, R. Krems, F. Marquardt, M. Tomza, M. Lewenstein
y A. Dauphin. Modern applications of machine learning in quantum sciences 2022. eprint: arXiv:2204.04198.
[45] S. Borah, B. Sarma, M. Kewming, G. J. Milburn y J. Twamley. Measurement-Based Feedback Quantum Control with Deep
Reinforcement Learning for a Double-Well Nonlinear Potential. Phys. Rev. Lett. 127, 190403 (nov. de 2021).https://link.aps.
org/doi/10.1103/PhysRevLett.127.190403.
[46] H. J. Briegel y G. De las Cuevas. Projective simulation for artificial intelligence. Scientific Reports 2, 400 (mayo de 2012).ISSN:
2045-2322. https://doi.org/10.1038/srep00400.
[47] J. Wallnöfer, A. A. Melnikov, W. Dür y H. J. Briegel. Machine Learning for Long-Distance Quantum Communication. PRX
Quantum 1, 010301 (sep. de 2020).https://link.aps.org/doi/10.1103/PRXQuantum.1.010301.
[48] C. Cui, W. Horrocks, S. Hao, S. Guha, N. Peyghambarian, Q. Zhuang y Z. Zhang. Quantum receiver enhanced by adaptive
learning. Light: Science & Applications 11, 344 (dic. de 2022).ISSN: 2047-7538. https://doi.org/10.1038/s41377-022-01039-5.
[49] N. Rengaswamy, K. P. Seshadreesan, S. Guha y H. D. Pfister. Belief propagation with quantum messages for quantum-enhanced
classical communications. npj Quantum Information 7, 97 (jun. de 2021).ISSN: 2056-6387. https://doi.org/10.1038/s41534-
021-00422-1.
[50] C. Piveteau y J. M. Renes. Quantum message-passing algorithm for optimal and efficient decoding. Quantum 6, 784 (ago. de
2022).ISSN: 2521-327X. https://doi.org/10.22331/q-2022-08-23-784.
[51] C. L. Cortes, P. Lefebvre, N. Lauk, M. J. Davis, N. Sinclair, S. K. Gray y D. Oblak. Sample-efficient adaptive calibration of
quantum networks using Bayesian optimization. Phys. Rev. Applied (mar. de 2022). journals.aps.org/prapplied/abstract/10.
1103/PhysRevApplied.17.034067.
[52] V. V. Sivak, A. Eickbusch, H. Liu, B. Royer, I. Tsioutsios y M. H. Devoret. Model-Free Quantum Control with Reinforcement
Learning. Phys. Rev. X 12, 011059 (mar. de 2022).https://link.aps.org/doi/10.1103/PhysRevX.12.011059.
[53] M. Y. Niu, S. Boixo, V. N. Smelyanskiy y H. Neven. Universal quantum control through deep reinforcement learning. npj
Quantum Information 5, 33 (abr. de 2019).ISSN: 2056-6387. https://doi.org/10.1038/s41534-019-0141-3.
[54] T. Fösel, P. Tighineanu, T. Weiss y F. Marquardt. Reinforcement Learning with Neural Networks for Quantum Feedback. Phys.
Rev. X 8, 031084 (sep. de 2018).https://link.aps.org/doi/10.1103/PhysRevX.8.031084.
[55] P. Altmann, J. Stein, M. Kölle, A. Bärligea, T. Gabor, T. Phan, S. Feld y C. Linnhoff-Popien. Challenges for Reinforcement
Learning in Quantum Circuit Design 2023. eprint: arXiv:2312.11337.
[56] M. Nägele y F. Marquardt. Optimizing ZX-Diagrams with Deep Reinforcement Learning 2023. eprint: arXiv:2311.18588.
[57] A. Skolik, M. Cattelan, S. Yarkoni, T. Bäck y V. Dunjko. Equivariant quantum circuits for learning on weighted graphs 2022.
eprint: arXiv:2205.06109.
[58] A. Khandelwal y S. DiAdamo. Enhancing Protocol Privacy with Blind Calibration of Quantum Devices 2022. eprint: arXiv:
2209.05634.
[59] B. Zhou, C. Lu, B.-M. Mao, H.-y. Tam y S. He. Magnetic field sensor of enhanced sensitivity and temperature self-calibration
based on silica fiber Fabry-Perot resonator with silicone cavity. Opt. Express 25, 8108-8114 (abr. de 2017).https://opg.optica.
org/oe/abstract.cfm?URI=oe-25-7-8108.
[60] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio
y P. J. Coles. Variational quantum algorithms. Nature Reviews Physics 3, 625-644 (sep. de 2021).ISSN: 2522-5820. https :
//doi.org/10.1038/s42254-021-00348-9.
[61] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke, W.-K. Mok, S. Sim, L.-C. Kwek y A. Aspuru-Guzik. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys.
94, 015004 (feb. de 2022).https://link.aps.org/doi/10.1103/RevModPhys.94.015004.
[62] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik y J. L. O’Brien. A variational
eigenvalue solver on a photonic quantum processor. Nature Communications 5, 4213 (jul. de 2014).ISSN: 2041-1723. https:
//doi.org/10.1038/ncomms5213.
[63] E. Fontana, M. Cerezo, A. Arrasmith, I. Rungger y P. J. Coles1. Non-trivial symmetries in quantum landscapes and their resi-
lience to quantum noise. Quantum 6(sep. de 2022).https://quantum-journal.org/papers/q-2022-09-15-804/#.
[64] K. Banaszek, L. Kunz, M. Jachura y M. Jarzyna. Quantum Limits in Optical Communications. J. Light. Technol. 38, 2741-2754
(mayo de 2020).ISSN: 0733-8724. arXiv: 2002.05766.https://ieeexplore.ieee.org/document/8998224/.
[65] M. Rosati y V. Giovannetti. Achieving the Holevo bound via a bisection decoding protocol. J. Math. Phys. 57, 062204 (jun. de
2015).ISSN: 00222488. arXiv: 1506.04999.http://aip.scitation.org/doi/10.1063/1.4953690%20http://arxiv.org/abs/1506.
04999%20http://dx.doi.org/10.1063/1.4953690.
[66] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani,
J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi y P. Wallden. Advances in
quantum cryptography. Adv. Opt. Photonics 12, 1012 (dic. de 2020).ISSN: 1943-8206. arXiv: 1906.01645.http://arxiv.org/abs/
1906.01645%20http://dx.doi.org/10.1364/AOP.361502%20https://www.osapublishing.org/abstract.cfm?URI=aop-12-4-1012.
T. Crosta / Anales AFA Vol. 36 Nro. 4 (Diciembre 2025 - Marzo 2026) 95 - 105 104