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Spreadings driven by gra\}ity and thermocapillarity
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Abstract

We obtain analytic and approximate solu-
tions for the axisymmetric spreading of a large
viscous drop on a smooth horizontal surface
driven by gravity and thermocapillarity. The lat-
ter forces appear either by uniformly heating or
cooling the substrate, or by imposing a quadrati-
cally increasing or decreasing temperature profile
in the substrate. The flow is described within the
lubrication approximation. For uniform cooling
and inwards increasing temperature, the spread-
ing is asymptotically described by respective self-
similar solutions, which are analytically obtained
(the drop radius follows power laws with expo-

" nents 1/6 and 1/2, respectively). For uniform

heating and outwards increasing temperature, the

gravity and thermocapillary forces tend to bal-

ance, so that respective equilibrium configura-

tions are reached; their shapes and final exten-

sions are obtained. The transition from an ini-

tially gravity dominated stage towards the cor-

responding asymptotic self-similar regime is ob-

tained by using a quasi-self similar approach.
Resumen:

Se obtienen soluciones analiticas aproxi-

edu.ar) v
f.Fellow of CONICET.

90- ANALES ATFA Vol. 9

‘madas para el derrame radial de una gota vis-

cosa sobre una superficie horizontal y lisa. El
flujo ¢s motorizado por las fuerzas gravitatorias
y termocapilares. Estas dltirnas aparecen debido
a un calentamiento o enfriamiento uniforme del
substrato, o bien cuando se le irnpone al mismo
un perfil de temperatura cuadraticamente cre-
ciente o decreciente. El flujo se describe dentro
de la aproximacién de lubricaciéon. Tanto con en-
friamiento uniforme como con temperatura cre-
ciente hacia adentro, el derrame estd asintoti-
camente descripto por respectivas soluciones au-
tosimilares, las cuales se obtienen analiticamente.
El radio de la gota sigue leyes de potencias con
exponentes 1/6 y 1/2, respectivamente. Por otro
lado, para calentamiento uniforme o temperatura
decreciente hacia afuera, las fuerzas gravitato-
rias y termocapilares tienden a balancearse, de
modo que se alcanzan respectivas configuraciones
de equilibrio. Aqui sc obtienen sus formas y ex-
tensiones finales. La transicion de la etapa inicial
dominada por la gravedad hacia el correspondi-
ente regimen autosimilar asintotico se obtiene em-

pleando un formalismo cuasi-autosimilar.

* Researcher of CONICET (email: j‘diez.@exa.imicen. o
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I. Introduction

The problem of the spreading of a viscous
liquid drop has been widely investigated theoreti-
cally and experimentally in the last years.!® Such
interest is mainly related to the occurrence of this
problem in several industrial processes, such as
coating, soldering and casting. Usually, driving
forces such as gravity and Laplace pressure have
~ been considered; however, much less attention has
been given to those cases in which differences of
temperature between the fluid and the environ-
ment give place to thermocapillary effects. As it
is well known, thermocapillary forces appear be-
cause hot regions of the free surface have sinaller
values of the surface tension than cold regions.
For wetting fluids which spread indefinitely, the
thermocapillary forces asymptotically overcome
other driving forces such as gravity and Laplace
pressure. They may either accelerate the spread-
ing or limit the maximum drop extension depend-
ing upon the temperature distribution at the free
surface.

An study of an axially symmetric drop
spreading on a smooth horizontal surface which is
uniformly heated or cooled was done by Ehrhardt
& Davis.1%!! They considered Laplace pressure,
gravity and thermocapillary as driving forces and
the drop evolution was obtained by assuming
static equilibrium, the spreading rate being deter-
mined via a contact angle - front velocity relation.
Their analysis and experiments were intended for
moderate values of both the Bond number Bo
(ratio between gravitational and capillary forces)
and the Marangoni number Ma (ratio between
thermocapillary and capillary forces). An exten-
sion of their work was lately done by Smith'?
who studied the spreading of a two-dimensional
droplet when a linear temperature distribution is
imposed at the substrate. On the other hand, a
study of the same problem for large values of Bo
and Ma was done by Kalinin & Starov!? by using
a quasi-steady approach.
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This work concerns with the axisymrnetric
drop spreading driven by gravity and thermo-
capillarity (Bo, Ma > 1) when the substrate
is uniformly cooled or heated and also when it
has a parabolic radially symmetric temperature
distribution. This last case may represent a lo-
cal maximum or minimum of a rather general
temperature profile. When the substrate is uni-
formly heated or the temperature increases out-
wards, the drop asymptotically reaches an equi-
librium shape, which is analytically obtained. In-
stead, when it is uniformly cooled or the temper-

ature decreases outwards, a transition betwecn a

gravity-dominated regime to a thermocapillary-
dominated regime is obtained. It is well known
that the gravitational regime is described by a
self-similar solution in which the drop radius fol-
lows the power law 1 oc t/8; likewise, in the ther-
mocapillary regime we find r; o t'/6 for the uni-
form cooling case and 7, o< £/2 for the parabolic
case (in both cases all the results are analytical).

The transition from the initial gravity-
dominated stage to the corresponding asymptotic
regime is described by a quasi-self-similar ap-
proach,!®> which assumes an instantaneous sclf-
similarity of the flow. The thickness profile dur-
ing the evolution is analytically obtained, but the
time dependence of the drop radius is numerically
solved.

II. Lubrication approximation and
temperature field

Consider a liquid drop on a smooth, horizon-
tal rigid plane (substrate) located at z = 0 in
which there is an axisymmetric temperature dis-
tribution T'(r,0) = T,(r) (see Fig. 1). The drop
is composed of a non-volatile, wetting and very
viscous Newtonian liquid surrounded by an am-
bient, gas at zero temperature (i.e., T is measured
respect to the ambient gas temperature). The lu-
brication approximation reduces the Stokes equa-
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Figure 1: Sketch of a large viscous drop placed on
a substrate with a parabolic temperature profile.
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where v, is the radial component of the velocity,
p the pressure, p the density and g the gravity

(here, we have assumed that U weakly depends

on T).
From Eq. (2) the hydrostatlc pressure is-

Mnd=pw~w+nﬂh~d
where + is the liquid-ambient gas surface tension,

h = h(r,t) the thickness profile and ¢ the curva-
ture given by,

3h 10k

= T rar @

By replacing Eq. (3) into Eq. (1), and setting

the boundary conditions of no-slip at the bottom
v-(z = 0) = 0 and of continuity of the tangentlal
stress at the free surface

vy
# Oz

ay

or

atz=h, (5

we get a parabolic velocity profile v.(z). By verti- -

cally averaging (v = h~! [ v.(z) dz) and neglect-
ing terms with he << 1, we get!0: -
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(3)

]

dc
h2
3u or

'7',3T
3u 87'

2u Or|, ©)

v =

where v = —d~y/dT = const. > 0.
The evolution equation for the drop shape is

v given by the continuity equation

Oh 10

—a—t+“5;( (7)

which must be solved together with Eq (6), un-
der the symumetry conditions at thc center and
the constraint: : :

rvh) =0,

Tt
/ ’ 2nrh(r,t)dr =V = const. (8)
0

where V' is the drop volume and r/(t) the front

* position.

For suﬂiuently thin and extended drops, the
heat transport equation reduces to 8*7'/82? = 0.
Therefore, the temperature distribution T'(z) is
linear and must satisfy the following boundary
conditions at the substrate and the free surface!®:

oT T
k“a'—z':kyg at z= h.
(9)
Here, k and k,; are the thermal conductivities of
the liquid and the ambient gas, respectively, and §
.is the thickness of the thermal boundary layer es-
tablished within the gas. Then, the temperature
profile within the drop is

T=T,(r)at z=0,

rea=n (it} o

where we have defined the length ¢ = k6 /ky; at
the free surface we have,

T(r)
1+h/¢

T(z - h) (11)

-and
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- or) o T(r) 1 OTS
O, €(1+h/£) 37' (1+h/€) or
- (12)

(11) shows that the temperature at the

free surface may vary from 0 for £ = § = 0 (adi-
abatic limit, with no thermocapillary effect) to
 Ty(r) for £= 6 = co (perfectly conducting hrmt)
. Usually, silicon oils are employed in the experi-
" ments; in Ref. 11 hehum was used as the am-
bient gas (k, & k) with an estimated value' of
£~ 0.1cm . If air were the ambient gas, by,aq-

suming that 8 is of the same order, it is expected _

that £ ~ 1 cm since k, ~ 0.1 k. Thus, in what fol-
lows we shall assume that the ratio h/¢ (usually
called Biot number) is much smaller than unity.
Here, we shall consider that the temperature
dlstnbutlon at the substrate is given by

( IT;) (1)

Ts (7‘) = T()

where L is e length and Ty is a constant ternpera— .
ture. For L -+ 0o, the uniformly heated (Tp > 0)

or cooled (T, < 0) case is obtained. For finite
L, Eq. . (13) is an axially symmetric parabolic
ternperature distribution which ‘may represent a
local maximum (T > 0) or minimum (Tp < 0)

of a rather general temperature profile.  For in-~
stance, the temperature field of a circular sub-.

strate whose border is kept' at constant temper-
ature is' described by Eq. (13) near the center.
Thus Eq. (12) takes the form = S
ar| Ty oh. "
— =—=11 +2Th— (14
aT:z:h ‘ e (+L2)a OL ( )
In the following, we shall be concerned with
spreadings involving drop volumes V' of some cu-

bic centimeters; therefore, only. grawtatxonal and

thermocapillary forces will be considered since the
_driving force due to the gradient of the Laplace
pressure is negligible in most of. the fiuid. vol-
_ ume. The study of this regime strongly simpli-
fies the problem because the contact line does not
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Tequire any special.treatment.
driven by gravity and surface tension in which

the drop' volumes are of some cubic millimeters -

“have been longly studied in the literature.®%!
In the present case, the second and third terms

of Eq. (6) dominate over the first one, so that'

the validity conditions of our approach are that
both gravity and thermocapillary forces largely
overcome capillary forces. By considering that
(')Iz/Br ~ ho/ry and 8c/Or =~ he/r}, where hy
(= V/r%) is the thickness at the centre of the drop,
Eq. (6) leads to the condmons

4 8

2y Y
T! > f)g ! Vl' V2L2 ~ |Tol
Eq.v (15) shows that for unlimited :’preadmgs
(r, — 00), the Laplace pressure can always be
asymptotically neglected. Thercfore, Eq. (6) re-
du(,% to '

_ —-&iﬁah

"YIBT
h 3p or

2u or a=h

with the temperature gradlent given by Eq. (14).

I11. v-Asymptotic solutions

‘ In the early stages of the spreading, ‘the first
term in Eq. (16) dominates whatever is the tem-
- perature distribution. Then; the flow is described
by the self-similar vxscous-gra\rlty solutlon known
as Barenblatt—Pattle s solution

ho= o) (1- r?/r})”"’-, an

: 73 \1/8 '
() = 0.894.. (pgz t) L 8)

where ho(t) = 4V/ 37”"%. As: the spreading devel-

ops, the thermocapillary effects become increas- -

.

ingly important.
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A. Substrate umformly heated or

cooled
) In this case Eqgs. (16) and (14) lead to (L —
o0): : :
o YTo 6h
(e

If the substrate is colder than the ambient gas
. {To < 0), the thermocapillary force is directed
outwards like the gravity force, so that both pro-
mote the spreading. Thus, while no other forces
appear, the drop spreads indefinitely. As r; in-
creases, the second term in Eq. (19) becomes
dominant, so that is given by :

ﬁ B oh

- 2uf or (20)
for
[ pgtv
> (ﬂ/ ,TO,_,) (21)

: We shall look for an asymptotic self-similar
solution of Eq. (20) in the form,

hr,t) = ho(t)H(n) , v(r,t) = v;(t)U(n) (22)

where vy = dry/dt is the front velocity, and H(n),

U(n) are nondimensional functions of 7 = r/ry.

The function U{n) may be obtained from the con-

tinuity equation; in fact, by replacing these ex-
pressions into Eq. (7), we get
(23)

wH —nH +77 (nUH) =0

where the prime denotes derivative with respect

to n, and

Ty dho : .
= —— = const. 24
oghe i const - (24)

In these variables, the constant volume condmon '

Eq. (8), becomes:
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V= Ihor% = const. (25)
.where we have defined the shape factor
YD
I= /O omnH(n) dn. (26)

Since I and V are constants, Eq. (25) gives w =
—2; then, Eq. (23) admits the analytical solution
U = n, that is the velocity profile is linear. It
should be noted that the self-similar solution of
Eq. (17) may be obtained with this formalism
when gravity is the only driving force.

By replacing Eq. (22) into Eq. (20) we have,

EH, - 2[1[1‘]'11]

i ITOhZ (27)

= const.

With the condition H(1) = 0, we obtain the self-

- sirpilar solution:

H = <‘1_'772)1/2 , (28)

| y
) = |- T, )
1= 2x/3. (30)

- If the substrate is warmer than the ambient
gas (Tp > 0), the thermocapillary force is directed
inwards unlike the gravity force, so that they com-
pete till balancing in an asymptotic configuration
with the front at rest. The equilibrium drop shape
given by the condition v = 0 leads to a flat profile
of constant thickness.

‘B. Substrate with a parabolic

temperature profile

- Now, the direction of the thermocapillary
forces depends on whether the drop is placed on

"a minimum (Tp > 0) or a maximum (T < 0) of

Ts(r), so that the drop may reach a final equilib-
rium shape or spread indefinitely. In this case,

CEILAP
"CITEFA - CONICET

. ZUFRIATEGUI Y VARELA
1603  VILLA MARTELLI
REPUBLICA ARGENTINA

SAN LUIS 1997 - 94



the first term in Eq. (14) may be neglected for
L < ry4/€/hg, a condition that is satisfied smce
we have already assumed ho/f < 1. The govem—
ing equation is

29200 _ 7T°h 31
3/J,h ar  ul? ‘ ( )
For To < 0 (outwards decreasing temperd.—
. ture) and .
-1/6 g

. ngsz)l - '
rr> | = y 32
> (25 L@

substitution of Eq. (22) into Eq. (47) (without

the gravity term) leads to v T
H=—r——=1

. ) . f}”To’l()Tf T . (33)

so that the asymptotic self-similar solution is

given by a constant thickness profile (I = )

whose front advances as

W TV 172
Tf(t) = {— ﬂ_p}:z tjl

(34)

This means that the wetted area grows linearly
with time, what represents a very high spread-
ing rate when compared, for instance, thh the
gravity driven spreading. :

For Ty > 0 (outwards increasing tempera-
ture), the equilibrium shape given by v = 0 leads
to . . S

ho= ho(1-r2)" (3
[ 3pgL? \'*
Tfeq = (47"2’)/710 . V1/3, (36)
I = 23 6D By
IV. Gravity -

transition

1

In principle, no single self-similar solution

can describe the complete flow evolution. How-.

ever, we shall look for a solution which, even
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thermocapillary

though it is'not self-similar for long time, it in-
stead approximates an instantaneous self similar
behaviour. This apprommdtlon has been success-
fully used®” previously to deal with spreadmgs
without thermocapillarity. Here, we shall suppose
that Eq. (22) approximately holds by considering
that H is actually a slowly varying function of
time, so that ¢t only determines its coefficients.
Substitution of Eq. (22) into Eq. (7), we get Eq.
(23) where w is now given by

OH HdI)

__“vf (6t Tdt 38

therefore, the quasi self-similar evolution will be
valid when the last term is much less than 2.~
We expect this is a good approximation provided
the departures from the self-similar behaviour are
small. Under this condition (which is fulfilled a
posteriori), we get U = 7 as before, and

fn=-HH'+M (1 + D) HH'— NnH. (39)

Here, we have introduced the dlmensmnless nuim-
bers '

3’)/T() 1 3’}”To Ty 2 r
M=2001 N_ (—) D=1
. 2pg¢ ho pglL? \ho L
‘ " (40)
and .
T )
=2, (@)

pg hd
Here, 3 is the ratio between the viscous and gra\;;
ity forces;-note that M, N are two different ratii
between the thermocapillary and gravity forces.
Eq. (39) must be solved under the boundary con-
dlthIlS

H = 1,H=0atnp=0 (42
H = 0atg=1
for fixed values of 3, M, D and N given by ry,

hg and vy at time t. The key idea of the approx-
imation is to suppose that during a small time
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interval from ¢ to ¢ + At, the solution is given by
the function H(n) which results from Eq. (39).

Once obtained the value of 3 that allows H (3)"to’
satisfy Eq. (42), the front velocity is given by

_ pgV? B(e)
- 3u DB
Then, the updated values of = 1 and hg give place
to another solution of Eq. (39) and so on.

(43)

A. Substrate. | éooled

(M <0)

A direct integration of Eq. (39) with L — oo
gives, ' '

uniformly

3 H2_1
JASEE— i M
2 -3 + 2 _ (44)

2 .

whence

Here, it is convenient to calculate the shape factor
as I = 7 [{ n*dH; thus, we get

w3—4M
I‘2(2-3M)' (46)

Eqs. (45) and (46) allow to perform the time
integration of Eq. (43) to obtain the spread-
ing dynamics. In Fig. 2 we show r;(t) as ob-
tained from the complete time integration for a
set of typical values. It can be seen the transition
from the gravity dominated regime, Eq. (17), to
the thermocapillary regime, Eq. (28). The limit
B — —M for |M| > 1 (see Eq. (45)) indicates
a balance between the viscous and thermocapil-
lary forces, so that gravity plays no role in this
asymptotic (thermocapillary) regime. -

- B. Substrate - with a parabohc

temperature profile

In this case, the equatlon of motion is (see

(39)) |
Bn=—HH'
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Figure 2: Front position r; as a function of time
for a drop placed on a uniform cooled substrate
with Ty = —20°C and € = 0.1cm. The drop
parameters are: V = 1em®, p = 1g/cms, p =
0.9g/cm? and v = 0.05 dyn/cm°C. The dashed
lines correspond to the asymptotic solutions given
by Egs. (17) and (28)

A direct integratioﬂ leads to

]

gy . oy (H+06
Np?=(1- H2)—2§ (1 - H)-28%In (TTB—)
(48)
where ‘ L2 :
=t (49)

N 'T() h()T f

is the relation between viscous and thermocapil-
lary forces. By putting H(1) = 0, 3* is given by
the root of the equation: '

1_ * ﬂ‘ _ =
ﬂ /32 <1+ﬂ*)_0' _(00)

The shape factor 1 may also be calculated ana-
lytically as:

_ ___z_r_ ?___ - - »3 1+ﬁ*
-IfN{3 B 425728 m( p )}
. - (51)
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Figuré 3: Front position ty and-as a function of
time for a drop placed on a uniform cooled sub-
strate with Ty = —20°C and ¢ = 0.1cm. The

drop parameters are: V = 1cm3, y = 1g/ecms,

p = 09g/cm® and = 0.05 dyn/em°C. The
dashed lines correspond to the asymptotic solu-
tions given by Egs. (17) and (28).

The complete calculation of 8* as a function
of N allows to perform the time mtegratxon The
results for r;(t) (see Fig. 3) show the transition
from the gravity regime to the thermocapillary
regime. For |N| > 1, Eq. (50) leads to

B~ —1 — exp (N/2 -3/2); (52)

this shows that the asymptotic self-similar ther-
mocapillary solution is exponentially reached.
Besides, Eq. (51) gives I — 7 as [N| — oo,
i.e. the thickness profile becomes planar in this

regime. The asymptotic balance between thermo--

capillary forces and viscous forces is evidenced by
B* — —1 as [N| — oo; in fact, §* = ~1 leads
to the asymptotic power law Tf(t) given by Eq.
(39.
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V Fmal remarks

) We have descnbed the spreadmg dvnarmcs of
a large viscous liquid drop placed on a heated or

cooled substrate under the action of gravity and

thermocapillary forces. Uniform and parabolic

radially increasing or decreasing temperature pro-

files on the substrate have been considered. It
has been shown that if the temperature distribu-
tion gives place to thermocapillary forces pointing

outwards, the spreading asymptotically reaches

a thermocapillary dominated self-similar regime.

Otherwise, the drop tends to a configuration at

rest, with a steady flow inside; thus, thermocap-
illarity balances gravity by means of the viscous
forcés ‘within the drop.

‘Solutions for the asymptotic regimes have
been analytically obtained. A quasi-self simi-
lar approach has been developed to describe the
transition from the initial viscous-gravity regime

- to the asymptotic self-similar regimes in which

the front advances following power laws of time.
We believe that the asymptotic thermocapillary

- regime achieved with the parabolic temperature

profile may be of interest in the coating indus-
try because its:uniform thickness profile and its
high spreading rate (see Eq. (34)) are desirable
features for this process. '
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