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Investigamos las soluciones de la ecuacion de Navier-Stokes que describen flujos viscocapilares
estacionarios paralelos sobre un plano inclinado. La forma de la superficie libre es dada por una
formula analitica obtenida al resolver la ecuacidon que expresa el equilibrio estdtico bajo la accidn
de la gravedad y de la tensién superficial, independientemente del campo de velocidades y de
cualquier hipétesis respecto de la reologia del liquido. Luego, el campo de velocidades es obtenido
resolviendo (en general, numéricamente) una ecuacién de Poisson en el dominio definido por la
seccién transversal del flujo. Los contornos de isovelocidad son perpendiculares a la superficie libre.
Se dan varias propiedades de las soluciones como funciones de los pardmetros del problema. Se
presentan dos soluciones analiticas especiales.

We investigate the solutions of the Navier-Stokes equations that describe the steady parallel
viscocapillary flows down an inclined surface. The shape of the free surface is given by an analytic
formula obtained by solving the equation that expresses the static equilibrium under the action of
gravity and surface tension, independently of the velocity ficld and on any assumption concerning
the rheology of the liquid. The velocity field is then obtained by solving (in general numerically) a
Poisson equation in the domain defined by the cross section of the rivulet. The isovelocity contours
are perpendicular to the free surface. Various properties of the solutions are given as functions of

the parameters of the problem. Two special analytic solutions are presented.

I. INTRODUCTION

We investigate exact solutions of the Navier-Stokes
equations that describe the steady flow of a rivulet down
an incline. Flows over inclined solid surfaces under the
action of gravity are ubiquitous in nature as well as in in-
dustrial processes. The theory of these currents is usually
developed within the frame of the lubrication approxima-
tion. Flows on an horizontal plane have been studied the-
oretically and in the laboratory by several authors (see
for example [1-4]). The equations for the same problem
but on a general topography have been derived in [5].

Exact solutions of the Navier-Stokes equation for these
flows can be of interest for several reasons. First, they
represent fundamental fluid dynamic flows and owing to
the uniform validity of exact solutions, the basic phe-
nomena involved can be studied in detail, thus provid-
ing a valuable insight that can help in understanding re-
lated problems. Second, they allow to test the validity
of approximations such as the lubrication theory. Finally
the exact solutions serve as standards to check the accu-
racy of numerical simulations. These points have been
stressed in [6], in which the reader can find an important
list of references that complement the classical treatise
[7] on exact solutions of the Navier-Stokes equation.

We investigate steady parallel flows whose free surface
shape is determined by surface tension and gravity. Sur-
face tension also provides the lateral confinement to a
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rivulet flowing down an inclined plane. In [8] exact so-
lutions of the Navier-Stokes equation were obtained for
viscocapillary flows in a rectangular inclined channel.

In Sec. Il we derive the basic equations, and show
that the shape of the free surface is determined by a
static equilibrium condition, and does not depend on the
velocity field. In Sec. III we obtain gencral analytical
formulae for the free surface. In Sec. 1V we present the
equations that determine the velocity field, and in Sec. V
we describe two special closed form solutions. In general,
however, the velocity field must be obtained numerically;
typical results are shown in Sec. V1. Section VII contains
the concluding remarks.

II. BASIC EQUATIONS

We consider the steady flow of a rivulet running downs-
lope on a plane whose inclination is a (0 < o < 7/2) (Fig.
1). The z, y coordinates lie in the plane (y is horizontal,
and z increases downwards), and z is perpendicular to
it. The rivulet extends from —oo < = < +oo and from
—d/2 <y < d/2, the velocity of the fluid is u = U(y, 2)X,
and its free surface is given by H = H(y).

The continuity equation is clearly satisfied, and the
Navier-Stokes equation reduces to

pr = Uy + U:z) + pgsina, (1)
py = 0, (2)
P = —pgcosa, (3)

where p is the pressure, p is the density, g is the gravity,
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'FIG. 1: Geometry of the problem.

wis the v1sc051ty, and we denote the de1 ivatives of p and
U with appropriate suffixes.
The boundary condition at the free surface is

o-fi=+Ch. . (4)

Here C = H"(1+ H'?)~3/2 is the curvature and fi is the
normal of the free surface (the primes denote the deriv-
atives of H with respect to y), v is the surface tension,
and the components of the stress tensor o are

-p uUy pU.;
o= |pwl, -p 0
wl, 0 - -p

Equation (4) leads to the conditions
p==vC and U, =H'U, at z=H. (5)

Integrating (3) and using (5) we obtain p = pg(H —
z)cosa - yC, so that the pressure is hydrostatic. Us-
ing this result in (2) we obtain:

H" 4
T | (6)
(1+ H'?)
where we have set k = (pg/v) cosa (k is the inverse of

the square of the capillary length). Equation (6) must be
solved subject to the boundary conditions

H(£d/2) =0, H'(~d/2) = —H'(d/2) = tan0,, (7)

where 6, is the static contact angle. Notice that H(y) is
determined by a static equilibrium condition, being in-
dependent of U, as the fluid motion is always parallel to
the free surface. It can also be noticed that H(y) is in-
dependent of the rheology, so that the present treatment
can be extended to a non-Newtonian fluid.

The equation for U is

kH' = [

ng sin o
U?l!/ +U.. = _/)g 1 ’ (8)

subject to the boundary conditions )
Uly,0) = 0, Us(y, H) - H'U,(3, H) = 0. (9)

If the rivulet is flowing over a non planar surface whose
relief depends only on y and not on z, we obtain the
same equations except that the boundary conditions (7)
at the contact line and (9) at the bottom must be changed
according to the relief of the supporting surface.
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FIG. 2: The free surface.

III. THE SHAPE OF THE FREE SURFACE

The classical study of static menisci can be found in
[9], and is amply discussed in [10]. For discussions of the
physics of the static contact line'see 11, 12]. We denote
by Y, H the coordinates of a point of the free surface.
For reason that will be apparent later it is convenient to
employ. a vertical coordinate z’ whose origin is the plane
where the slope of the solution of (6) takes the value
6 = +m/2 (see Fig. 2). Then 2’ = h, is the supporting
plane (z = 0; h, > 0 if 6, <1r/201 h, < 0if 6, > 7/2)
and the free smf'we is given by h = H + hyp.

We set A = H(0) and ho = A + hy so That (6) now

reads
] R !
kh = [(1 + h'z)alz] ’ (10)

and (7) are converted into

>

h(—d/2) = h(d/2) = hy, W(-d/2)

Integrating (10) from 0 to Y, multiplying by £/, and in-
tegrating again, we obtain

1
V14 h'?

Calling Y,,,. the value of Y for which A(Y;,) = 0 and
k' (Y,n) = =00 and using (11) we find

1 2_ 1 _
Sk(h = ho)? = 1

1 1 .
I = Zkhy — —.
/(0) = o ~ - (12)

We observe that 2(0) is the curvature of the free sur-
face at the vertex, that is negative. On the other hand
|”(0)| must be smaller than hy' (that corresponds to
the circular shape that is achieved when surface tension
dominates). Then one finds that

[N

05ﬁs%kh0<l. (13)
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= —h'(d/2) = tan 0y,

= (h=ho)h"(0). (1)

1)

)

L) Y



'

{n

[

# (o

("

05

2

FFI1G. 3: The shape of the free surface given by (15). From left
to right, the values of 8 are 0, 0.3, 0.6 and 0.9.

Substituting (12) in (11) we obtain

h 1 1
— + =kh(hg — h) = ——=.
gt =) =

ho
Introducing the dimensionless variables { = h/hg, n =
Y/hg, we can solve (14) for dn/d( to obtain

_L dEsa-q)
¢ TVI-Oh A OP

For # < 1, this equation can be integrated to find

i{VI—0U+ﬂU—OP

(14)

|5

2

1-p¢

2 nl 2y _ (12 ]
+v€%uw1a> m¢|)ﬁ. (15)

Here (¢ | a?) and E(¢ | a?) are, respectively, the elliptic
integrals of the first and second kind, and

L A(1=p _ Y 14B(645)+1-7
¢= \/7‘——)5,1 =g 4= 3/7-1+ﬁ(a+ﬁ)—1+ﬂ‘
Notice that a > 1. In Fig. 3 we show n({) for several
values of §; it can be seen that the cross section of the
rivulet tends to a circle as 3 — 0, and becomes flatter

and wider as § — 1. In the limit 8 = 1 the width of the
rivulet is infinite and one has

n = :t{g—[l— 1+h(2—h)+—\%

- h 1
X (arctanh lii(z—z——h)- - arctanh—\/.—i):i }

with d = oo. This solution is related to the cylindrical
meniscus [9].

It is convenient to express the equation of the free sur-
face using the slope 8 = arctan(d(/dn) as a parameter.
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We obtain
¢ = 2ﬁ(1+ﬂ \/(1+ﬂ)2 4ﬂcose) (16)
_ 1 (830 |
" BB m{“ 575 (51- o)
_ ap (0, __ 88 |
SRR )

I
;
Now we can appreciate the rationale of our change o‘l
the origin of the coordinates: by this device we obtamed
expressions of ¢ and 7 that depend only on 3, and not
on #,. The contact angle only determines the position g,,
of the supporting plane, given by (, = {(6,). The w1dth
of the wetted stripe of the supporting plane is d = 27, = —“
217(0,) and we can define the aspect ratio of the rivulet
as R=(1-¢p)/d.

Of course § depends on hg, that is not directly ob—
served in the actual profile. For this reason we need for
mulae that relate hg and § to some property of the v1sxble
shape of the rivulet, such as its maximum thickness A!
Defining !

,\:lkAZ:w

AZ
2 2y

we find hy = A with

1
— — \, — 2
§ = o </\ 1+c050,,+\/(/\ 1+ cosfy,) +4/\),

B =1+86X0—1+cosb,),

that are the desired formulae. Notice that the condition
(13) is equivalent to the static equilibrium condition ‘

1
A= §I<:A2 <1 - cosby,

that sets the upper limit to the thickness of the rivulet. ‘k

|

IV. THE VELOCITY FIELD

We mtloduce t = z/hg, s = yfho, u = U/Uy where :
Uy = p~'phigsina, so that (8) becomes the Pmsson
equatlon L
I
!
Ugs + Uy = -—1, (18)

and the boundary conditions (9) read now

(s, Q) =0. (19)

u(s,(p) = 0, wi(s, () —

It can be verified that the last condition implies that
the lines of equal velocity are perpendicular to the free
surface. In general the problem (18-19) must be solved
numerically. Before discussing the results, we show two
special solutions that can be obtained in closed form.
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FIG. 4: Contour plots of: (a) the solution (26), (b) and (c) the numerical solutions of (18) and (19) for 8 =0.8 and 6, = /6
and 8, = 57 /6, respectively. The thick line is the free surface, and the thin lines are equally spaced isovelocity contours.

V. SPECIAL ANALYTIC SOLUTIONS

When surface tension dominates we have § = 0, and
the cross section of the rivulet is a circular segment. If in
addition 6, is /2 or = it is possible to obtain the solution
in closed form.

A. The solution for =0, 0, = /2

The equation (18) can be 1educed to Laplace equation
sefting

1
w=—5(t- )+, (20)
thus obtaining
'ﬂass + ﬂlt = 0. (21)

We use polar coordinates r, 8, then s = rcos 8, { = rsin,
the free surface is r =1 (5 =cosf, { =sind, 0 < 6 < )
and d(/dn = —cotd. Then the boundary conditions for
U are

ir(1,0) = sin?9, 0<0<m, (22)

i(r, 0) w{r,7) = 0. (23)

We first solve (21) in the semicircular domain 0 < r <
1, 0 < 8 < 7 by separation of variables. The solutions

that are regular at » = 0 and satisfy (23) can be expressed
as

it

o0
=Y apr™sinmf. (24)
m=1

Using the condition (23) to find the coefficients a,, we
finally obtain

8 = 2+ gin[(2n + 1)0] .
™ Z (2n—-1)(2n+ 1)2(2n + 3) (25)
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This series can be expressed in terms of the Lerch trascen-
dent function ® (r?e?¥®,2,1). However, in the calcula-

tions it is better to use the expression (25). The full
solution is obtained using (20) as
u= -%t2 + . (26)
The maximum value of  is
u(l, /2)—1—i2—0*~1—0401432
where C* = 0.915966... is Catalan’s constant. Contour

plots of this solutions can be seen in Fig. 4.
Integrating (26) over the cross section of the rivulet we
obtain the volumetric flow as

pgsina (6 — 7+ 7<(3)
Q=12
7 4

Here ¢ is the Riemann’s Zeta function.

) ~ 0.3616632950 %
m

B. The solution for =0, 0, ==

It can be verified that the solution of (18) that satisfies
(19) is
1 o 1 R ,
u=A-— Z(2+r )+ Eln(lﬁ-r + 2rsin 6),
where the constant A must be chosen to satisfy (19). This
solution diverges, as must. be expected since for § = 0,
0, = = the rivulet touches the supporting plane along a

line, so that the viscous drag exerted by the plane van-
ishes.

. VI. NUMERICAL SOLUTIONS

For arbitrary § and 0, the velocity field must be calcu-

lated numerically. We have used a finite element. method
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FIG. 5: The volumetric flow Q.

to integrate (18) subject to the boundary conditions (19).

The mesh varied from 9000 to 70000 points according to

the shape of the contour. We checked the accuracy of the

method by comparing the numerical solution for g = 0,
f, = m/2 with the closed form solution (26). The aver-
age difference between the numerical and the exact u was
2 0.0015 % and the maximum difference was =~ 0.05 %.

We calculated solutions for 10 values of § from 0 to
0.9 and 6 values of 8, from 7/6 to 7. In Fig. 4 we show
typical contour plots of u(s,t). Notice that the larger
velocity gradients occur as expected near the supporting
plane and not too close to the surface of the rivulet, where
the isovelocity contours are nearly parallel to the plane.

-
;

On approaching the free surface the isovelocity contours
become perpendicular to the surface.

From the numerical solutions it is easy to compute th
volumetric flow @ = fu dS (Fig. 5), the cross sechon
of the rivulet, the maximum value of the velocity at the
vertex, and the average velocity. In terms of these quan-
tities :md of the geometrical properties of the free smf’mo
derived in Sec. 1ll any other magnitude of interest (mgh
as the drag coeflicient) can be computed. [

|
i

!
|
|

VII. CONCLUSION

We derived exact solutions of the Navier-Stokes equat
tions that describe the steady flow of rivulets runmng
down an inclined surface. We find that the shape of tho
free surface is given by an analytic formula obtained by
solving the equation that expresses the condition of sta—
tic equilibrium under the action of gravity and sur face
tension, independently of the velocity field and on zmy
assumption concerning the rheology of the liquid. The
velocity field is then obtained by solving (in general nu—
merically) a Poisson equation in the cross section of the
rivulet. The isovelocity contours are always pexpendmu‘l-
lar to the free surface. Two special analytic solutions axle
presented.

The present solutions are valid for arbitrary values ')f
the Reynolds number of the flow. However, the issue of
their stability remains to be investigated in the future.!
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