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El flujo lento de peliculas delgadas de un liquido sobre superficies sélidas es un importante
fenémeno en la naturaleza y en procesos industriales. La investigacién tedrica y numérica en este
tema se ha centrado sobre fluidos Newtonianos, a pesar que frecuentemente tanto en situaciones
reales como experimentales la reologia del liquido involucrado no es Newtoniana. Usando la
aproximacién de lubricacién, obtenemos la familia completa de soluciones estacionarias y ondas
viajeras que describen corrientes unidimensionales de un liquido con reologia del tipo ley de
potencia sobre un plano inclinado bajo la accién de la gravedad y de los esfuerzos viscosos, para
valores arbitrarios del exponente reolégico.

The slow flow of thin liquid films on solid surfaces is an important phenomenon in nature and in
industrial processes. So far the theoretical and numerical research has been focused on Newtonian
fluids, notwithstanding that often in the real situations and in the experiments, the rheclogy of the
involved liquid is not Newtonian. Using the lubrication approximation we obtain the full family
of steady and traveling wave solutions that describe one-dimensional currents of a power-law non-
Newtonian fluid on an inclined plane under the action of gravity and the viscous stresses, for arbitrary

values of the rheological exponent.

I. INTRODUCTION

The slow flow of a thin liquid film is an ubiquitous
phenomenon in nature as well as in artificial instances.
The theory of these currents is usually based on the lu-
brication aproximation [1], that assumes that the motion
is essentially parallel to the supporting plane, so that
the pressure is purely hydrostatic, that inertia effects are
negligible, and that the length of the current is much
larger that is depth. Flows on a horizontal plane have
been studied by several authors [2-5]. The equations
for the same problem but on a general topography have
been also derived in [1]. In all these works it is assumed
that the liquid is Newtonian, notwithstanding that often
the fluids involved in the real situations are not New-
tonian. There are few papers where the non-Newtonian
behaviour is considered. The governing equations of slow
gravity flows of a power-law fluid on a horizontal plane
and on an incline were derived in [6] and (7] respectively,
and in [8, 9] the flow of a Bingham fluid on an incline
is studied. The viscoplastic Herschel-Bulkley model has
been employed to study mud flows down a slope [10].

Here we investigate theoretically the traveling wave so-
lutions describing the flow of a power-law liquid on an in-
cline. We employ the governing equations that describe
the evolution of the free surface and the velocity of the
{luid under the effect of gravity and viscous stresses, ob-
tained in (7] within the lubrication approximation. In
Sec. 11 we show that there are 17 different kinds of trav-
eling waves, according to the value of the propagation
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velocity ¢ and of an integration constant j; that is re-
lated to the difference beetwen ¢ and the averaged veloc-
ity of the fluid . Closed form expressions for the profiles
can be found if ¢, or jy, or both vanish. Five of them,
that we discuss in Sec. L1, are steady solutions (c = 0).
Next, in Sec. IV we present. 8 different. downslope travel-
ing waves. In Sec. V we investigate 4 upslope traveling
waves. Some of the solutions presented in Sections [V
and V correspond to peculiar boundary conditions that
may be difficult to achieve in the laboratory, but most
correspond to simpler conditions, fairly easy to repro-
duce. In Sec. VI we give the expressions of the 17 solu-
tions for Newtonian liquids, since they can be obtained
in terms of known functions and many of them have not
been published. Section VII deals with the special cases
of flows on horizontal and vertical planes. Section VIII
contains the final discussion.

II. BASIC EQUATIONS

We consider a fluid moving on a non horizontal plane,
whose inclination is o (Fig. 1). The coordinate z is
perpendicular to the plane, and the x coordinate lies in
the plane and increases downwards. We shall assume
that the y coordinate is ignorable.

We assume the power-law constitutive equation [11]

Ti; = QAE(_I_/\)/'\E‘U,

where £;; is the strain rate tensor, B = (£;¢:;)"/? is
its second invariant, and A, )\ are positive constants.
The power-law rheology is the simplest non-Newlonian
model, and with appropriate choices of A and A accord-
ing to the strain rates of the problem at hand, it describes
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FIG. 1: Geometry of the problem.

reasonably well the behavior of many fluids of practical
interest. Shear thinning liquids correspond to A > 1,
shear thickening (luids to A < 1, and the Newtonian rhe-
ology to A = 1, in which case A is the viscosity.

Let 2 = h = h(z,t) be the free surface of the current.
We assume that the length of the current is much larger
than its depth, then the flow is almost parallel to the
plane and the lubrication approximation can be used.
Then the equation that governs the problem [7] is

=0, (1)

x

hy + ko {[a(tan o -~ hz)]’\ h,’\"'z}

where k = A7\ + 2)7120-N/2(pgcos @) and o =
sgn(tana — hz). In terms of h, the (z averaged) velocity
u and the flow j (per unit length in the y direction) of
the current are given by

w = ko [o(tana — h,)) RA,

j = uh.

Note that the direction of the flow is determined by the

slope of the free surface with respect to the horizontal.
To find traveling wave solutions we assume that h de-

pends on the single variable s = = — ct, where c is a

constant. Then Eq. (1) can be integrated to obtain

dh o(jo + ch) 1
— =tana~o¢o [W ,

2
o’ )
where jg is an integration constant. Now u and j can be
expressed in terms of h by

Jo

u=c+7,

Jj = Jo+ ch.
The first of these equations implies that 7y is the flow as
mesured in a reference frame moving with the velocity
c. The second equation shows that jp is equal to the
flow in the points (if they exist) where the thicknes of
the current vanishes. These two properties will be useful
to interpret the physical meaning of the solutions. We
shall see that the number of different types of solutions
of (2) and their behaviour is determined by the zeros of
the r.h.s. of (2), that in turn depends on ¢ and jo.

A point sy where h vanishes corresponds to a front of
the current. Referring to Fig. 1, a front may lic to the
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left of the current (upslope) or to its right (downslope).
In the first case h = 0 for s < sy, and in the second
for s > sy. If ¢ = 0 the front is fixed. If jo # O there
is a non-vanishing flow at the front. This is due to the
presence of a sink that is absorbing this flow, as occurs if
the supporting plane has a border where the fluid spills
over [3]. From (2) it can be seen that the profile near
a front is given by h oo |s — 55|V @D if jo = 0 or
hoc |s = sp|M M2 f Gy # 0 (u diverges at the sink).

For A # 1, the equation (2) must be integrated numeri-
cally, except when jg, or ¢, or both vanish, in which cases
the following implicit formula for h(s) can be given:

stana+ B = h,{l— N3 [/L, I pn+1;0 (h/ho)ll‘] } , (3)

where I (a, b; ¢; ) is the hypergeometric function, and
B is an integration constant. When ¢ = 0 we must use
in the previous equation
1/(A+2)
)W

A JJo
= ——, hyg=h; —_—
/ A+2 0 J (k tan* o

fil

while when jo = 0 we must set.

=

(5)

c 1/(x+1)
, /lo=h,cE( o ) .

A
A+1 ktan* o
The solutions for jop = 0 have been discussed in {7]. No-
tice that oI7 (i1, 1; 0 + 1; 2) is complex for z > 1, and its
imaginary part is —mpz™#. Then whenever z > 1 we
must sel. Im(B) = wphy to obtain a real solution.

III. STEADY SOLUTIONS

These solutions arise when ¢ = 0. There are two trivial
steady solutions, the first is

h = stana + const. , jg =0, (6)
and describes a fluid resting on an incline. The other is
h = hg = const. , jo = kh(()'\“) tan* o, (7)

that represents a uniform flow on an incline. Using (3)
and (4) three other steady solutions are obtained. In Fig.
2 we show the five steady solutions. This and the follow-
ing figures have been drawn for A = 1.5. For different
values of X\ the shape of the profiles looks similar.

To avoid lengthy circumlocutions when describing the
currents, we introduce a shorthand notation. We label
H (for horizontal) the solution (6) and P (for parallel)
the solution (7). Any current having a part that tends
to the horizontal will have H in its label. Any solution
having a part that tends to be parallel to the supporting
plane will have P in its label. When jg # 0 we add to the
label a 4+ or — sign according to the sign of jo. A sink
to the right (downslope) will be denoted by r and one to
the left (upsolpe) by {. With this notation the solutions

BARILOCHE 2003 - 137



FIG. 2: Steady solutions for A = 1.5. In this and the following
figures we give the limiting values of j and u to the left and to
the right of each profile. A thin arrow mdlcates the direction
of the velocity of the fluid.

shown in Fig. 2 are: H, P+, PH+, Pr+ and Hl~. The
meaning of the last three solutions is: ‘

e PH+: this solution is a steady current flowing into a
large and deep pool limited far to the right by a retaining
wall of fixed height, so that the excess.fluid spills over it.
Its profile is obtained from (3) with ho and p given by
(4), in which we must set jo5 > 0, and h > hg. PH+ is
the simpler combination of P+ and H. -

e Pr+: it describes a steady current flowing down a half-
plane over whose border it spills. Its profile is given by
(3) with hg and p given by (4) with jp >0 as before, but
now h < hg. This solution is a variation of P+. ’

e HI=: this solution occurs when a large and deep pool
limited to the left by an inclined wall of fixed height is
being filled with a constant flow so that the excess fluid
spills over the inclined wall. 1ts shape'is given by (3) with
hy and . given by (4) with jy < 0, and is a-variant of H.

IV. . WAVES TRAVELING DOWNSLOPE

Figure 3 displays waves traveling downslope. To indi-
cate this fact we add to their labels an arrow pointing

138 - ANALES AFA Vol. 15

down. Also we employ an asterisk to distinguish a so-

lution that -has a moving front, when it is not a moving
.sink. We now describe the most interesting:.

e PHY{: this solution occurs when a steady current flows
down a plane into a large and déep pool that is being
drained in such a way that its level lowers at a constant

rate, such that u = ¢ (since jo = 0). This solution is

described by equations (3) and (5). »
e P*|: this solution describes the current produced when

~ a source located far upslope has started delivering a con-

stant flow some time in the past.
e PH|+: this solution is similar to PH|, the difference
being that now the rate of loweri ing of the level of the
pool is slower than for PH|; so that u > ¢ (jp > 0).
e PH|~: this solution describes a situation in which the
level of the pool lowers faster than in the case of PH |,
and then u < ¢ (jo < 0). ' .
e PP'|—: here P’ indicates that this current tends as-
ymptotically to two different values of h {upslope and
downslope). This solution is analogous to the kinemat-
ical flood wave {12] and describes the current produced
when a steady source far upslope increases suddenly its
flow to a new constant.value. Notice that in this case jy
must satisfy thecondition 7* < jo < 0 with

£l

7= —ch(A+ 1)()\+2)
When considering this solution it may be convenient to
express ¢ and jo in terms of hoi, j1 = jo + chor and hgg,
J2 = jo +chga, as these quantities are directly related to
the behaviour of the source. One finds
I et
hor = hoz'

__ho2jy = hoyjga.
7 hor = hoy

with j; = I»h’\*'2 tan* o, i = 1,2. It can be verified that
the condmon J*<jo <0 does not restrict the ratio
ho1/hoz, that can take any value larger than unity.

We shall not'discuss the three remaining solutions
(Pr) +, PHlL|~, Pl|-) as they have a moving sink,
a feature that does not occur in situations of pxactlcal
interest.

V. WAVES TRAVELING UPSLOPE

Two of these solutions (Fig. 4) are interesting:
o H*7: it describes a large poof with an inclined side, that
is being filled from far right in such a way that the level
increases at a constant rate. The corresponding formula
for h is given by (3) and (5) since jy = 0.
e PHT4: this solution corresponds to the same situation
of H*1, but in addition a constant flow is feeding the pool
from upslope. In this current there is a point in which
the slope of the free surface is horizontal. Toe the left of
this point. the fhiid moves downslope, while-to the rigth
of it the liquid moves upslope:
"~ The two remaining solutions (Prf+ and H{]—) have a
moving sink, and we shall not discuss them.
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FIG. 3: Waves traveling downslope (A = 1.5). In this figure
and the next a hollow wide arrow indicates the sense of motion
of the wave.

FIG. 4: Waves traveling upslope (A = 1.5).

x V1. THE NEWTONIAN CASE

When the liquid is Newtonian .()\ = 1) all the 17 so-
lutions can be obtained in closed form. Since they have

not. been published except for the special case @ = 0 (see -

[3]), we shall give the corresponding expressions that can
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be obtained from the general formula

_ joln(h — h,) + ch, In(h — h,)
st.ana+B-h—Z C = 3k tan oh? )

(8)

where the sum is over the three roots h, of jg + ch, 1

ktan ah? = 0. When ¢ = 0 equation (8) takes the sunple}

form

h,

h+oh;

ohy a 1’1( )
rctan
JE V3oh;

aml (h — oh;)?
h? + ahh; + h? |’

stana+ B = h—

When jo = 0 equation (8) yields

h h | ath )2

—_— -l -

stana+ B = a1 (""LC) » ¢>0 )
h — hcarctan($£) |, ¢<0

VII. THE CASES a=0 AND a = n/2

It is convenient to discuss separately the case when the
supporting plane is horizontal as the basic solutions H;
and P can not be distinguished. This leads to a reductlon
in the number of kinds of currents and in addition it is
posible to obtain expressions in terms of known functlons*J
that are the generalization to non-Newtonian liquids of
those obtained in [3].

There are two steady solutions: the trivial one

h = const.,

(s0 — )

)

corresponding to a uniform layer of fluid, and
[2>\ +2

_O'_j(lm
h_(k) Ao

that represents the situation in which the fluid is sup-
ported by a half plane (x < sg if o = 1l or z > s 1f‘
o = —1) so that at £ = s¢ the fluid provided by a sounce
located at infinity spills over the border. f

The solution ;

b= (25) [2>\_+1

& Py

A
] F2x¥3

T
(so — s ]
represents a current with a front that advances with con-
stant speed ¢ on an infinite plane. It describes the ﬂow
produced by a plane piston (or a spatula) that advanccs
with uniform speed, pushing a constant volume of fluid. f
This solution was already obtained in [6].

The solution (A; = 1 = A71 Ay = 2+ 2)\71)

8 Re [(—%) * Bhic/jol (A2, /\1)} :

> 1,

do
C

h

Jo
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where B.(a,b) denotes the incomplete beta function, de-
scribes for ¢ = 1 (¢ = —1) a current in which the thick-
ness of the fluid tends to a constant value hg = |jo/c]
far to the right (left), and increases as |s|'/2**1) far to
the left (right). There is no sharply defined front, but
the point where h = 2hg can be conventionally taken as
definig the position of the "front”. The average velocity
of the fluid tends to zero far ahead this ”front”, and ap-
proaches the constant value ¢ far behind. This solution
is the asymptotycs of the current produced by a piston
that pushes a layer of fluid of uniform thickness hg, when
a sufficiently long time has elapsed from the beginning of
the motion, and the perturbation has advanced to a very
great distance from the piston.
The two remaining solutions are

. Az ENE +
— ol _k .
so=s = o |= Re [( Ijo‘) Bh]c/]o|(>\2)/\l)jl7
h f— <1,
Jo
and
A2 3+
—s=o| B (EN -xp,, .
Sp—8=0 - <|jo|) € B—h[c/]g] (A27A1)'

Both represent currents with moving sinks.

In the limit oo = 7/2 only the solutions H and P+ sur-
vive, together with combinations in which the horizontal
and vertical parts of the free surface join at rigth angles.

VIII. DISCUSSION AND CONCLUSIONS

According to the above descriptions, we find that il
one disregards the five solutions that have moving sinks
(Pr]+, PHLl|—, Pl|, Pr1+ and HI{-), the remaining
12 solutions can be separated into two groups.

The first group consists of flows into a very large pool
bounded on one side by an inclined plane (either with or
without a border to the left). This comprises H, Hl—,
PH+, PH)|, PH|+, PH|—, PH1+, and H*1. All

the currents of this group can be produced by a device
that empties or fills the pool in such a way that the level
of the liquid lowers or rises at a constant rate, plus an
appropiate source far upslope on the inclined plane.

The second group consists of solutions representing
flows produced by a source far upslope of an inclined
plane (with or without a border to the right). It com-
prises P+, Pr+, P*| and PP’}—.

As one changes the rheological parameter A the general
shape of the different solutions looks similar. However it
must be kept in mind that the properties of the solutions
are sensitive to A, that enters in a non trivial way into the
basic equations (1)-(2). It can also be noticed that several
solutions we have described have their counterparts in the
case of a Bingham fluid as can be observed in [8].

The present theory does not include surface tension ef-
fects, which implies that the appropriate Bond number
must be large. Surface tension effects will be more rele-
vant where the curvature of the free surface is large, as
happens near a front. But precisely there, the lubrication
approximation breaks down, so that a correct description
of the current where the curvature is large requires a dif-
ferent, more complex approach that is beyond the scope
of this paper. This problem is also present in the New-
tonian case, but does not invalidate the remaining parts
of the solutions nor the spreading relations derived from
the theory (see the discussions in [6, 7]). We do not see
any reason why the same should not hold true for non-
Newtonian (luids,

This rich family of solutions can be of interest to test
the accuracy of numerical simulation codes in a variety of
different situations. It should be interesting to compare
them with experimental results, but to our knowledge
most of them have not yet been investigated in the lab-
oratory.
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