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Mediante un cédigo numérico resolvemos la ecuacién de difusion no lineal para perfiles iniciales del tipo de ley de potencias
que llevan a soluciones con tiempo de espera. De esta forma estudiamos en detalle la formacidén y evolucién del corner layer
y determinamos ¢l tiempo dc espera y la velocidad de arranque del frente en funcion del exponente de no linealidad y el
exponente que caracteriza el perfil inicial. Mostramos que a partir de los valores del tiempo de espera asf determinados es
posible obtener cotas inferiores y superiores del tiempo de espera para condiciones iniciales mas generales. Dichas cotas son

mas restrictivas que las cotas tedricas hasta ahora conocidas.

We solve numerically the nonlinear diffusion equation for initial profiles of the power law type that yield waiting time solu-
tions. We study in detail the formation and evolution of the corner layer and we find the waiting time and the start-up veloc-
ity as functions of the nonlinearity exponent and of the exponent characterizing the initial profile. We show that from the
waiting-times thus obtained it is possible to derive lower and upper bounds of the waiting-time for more general initial con-
ditions. These bounds are more stringent than the known theoretical ones.

i Iintroduction

Many phenomena such as flows in porous media, vis-
cous-gravity currents, etc. are described by nonlinear dif-
fusion equations of the type

n =L, ) +nng ()

where n = n(x,f) = 0 and m > 0. Under conditions that will
be specified below, its solutions display the waiting-time
behavior, that consists of an initial time interval ¢, in
which the n profile changes, but its front remains mo-
tionless. More precisely, if initially (z = 0) > 0 for x > x,
and n = 0 for x < x;, then also #> 0 forx > x,andn =10
for x < x,for 0 < ¢ < ¢,. We shall be concerned with solu-
tions of (1) defined for x < 1 (with some adequate bound-
ary condition atx = 1),

Given the initial profile n(x,0) = g(x), the theory pre-
dicts whether the solution will have a non vanishing
waiting-time, but excepting very few special cases it does
not give the value of #,. In the remaining cases, it only
provides lower and upper bounds of ¢, that frequently are
poor estimators of the exact value,

It has been proved'”. that if g(x) = 0 for x < 0 and
g(x—0+) = 4 x*, with o 2 1 the solution is of the wait-
ing-time kind; otherwise the front starts moving immedi-
ately. Furthermore, if o > 1, during the waiting time the
profile develops a narrow moving region, called corner
layer, in which n,, has a narrow peak. As the corner layer
moves towards the waiting front it becomes stronger (i.e.,
the peak width decreases and its height increases), and on
arriving at the front it becomes a corner shock (a disconti-
nuity of n,), and the waiting-time interval ends. In these
cases the motion of the corner layer determines the value
of waiting time ¢, and the start-up velocity of the front.
On the contrary, when o = 1 no corner layer develops
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during the waiting stage, but a corner shock is formed at
the front position precisely at start-up.
In addition, Aronson ef al ® proved that, if

g(x)= Ax® + O(xz) asx —»>0

and @
glx)< Bx? forallx>0
then
m m
= <t, < = 3
n 2(m+2)B She 2(m +2)4 a ©)

When 4 = B these bounds coincide, and (3) gives the
exact value of 1,,.

A useful upper bound of £, (but not the exact value)
can be derived by means of the Shifting Comparison
Principle of Vazquez®. Introducing # = n'" and G = g'™,
this Principle can be stated in our case as follows: if for

every x < 1 we have

M(x,0) = fG, (x)dx < [Gy(x)dx = M, (x,0) ®

—o -

then for every ¢ > 0 one has

M (x,0) = fh,(x,t)dxs fhz(x,z)dm M, (x,0) (5)

i. e., if the “mass” of ;" is initially shifted to the right

with respect to that of n, ", this situation is preserved for
every later time. According to this principle, if g;,(x < 0)
= 0 and m; is a waiting-time solution, then 7, is also a
waiting-time solution with ¢, 2 ¢,,, a result that shall be
useful later. To obtain the upper bound of Vazquez, let us
consider a waiting-time solution 1, with My(1,0) = 1
whose waiting time is 7,,. Now we take G, = 28(x—1) that
is an initial condition for which (1) has a known analytical
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solution®, according to which M,(0,f) =0 for ¢ < ,, given
by

Jar(+L)T"
m m
o= aet ©

Then according to the Comparison Principle

by S L. @)
that is the desired upper bound. If Mx(1,0) = 4 we must
take G; = 248(x-1), and correspondingly the bound is
then ¢,,/4.

In another paper’ we obtained numerically the exact
values of ¢, for initial conditions of the type

2a H
g(x)-——{Kx if0<x<]

8
0 ifx<0 ®

for b <m<9and | <a <12, We used K = (1+2a/m)”
(so that M(1,0) = 1), and the boundary condition 7,(1,f) =
0. We defined the initial time as —,, so that the waiting
stage ends at £ = 0.

Here we investigate the formation and evolution of the
corner layer, and we show how to employ our exact val-
ues of ¢, to obtain bounds more stringent than the theo-
retical ones, for initial conditions more general than (8).

iIl. Corner Layer motion and development

To describe quantitatively the evolution of the corner
layer it is convenient to introduce some definitions that
shall be given when needed.

To investigate the motion of the corner layer we de-
fine its position x(¢) as the point where n,, is maximum.
In Fig. 1 we show the corner layer velocity v.(?) as a
function of #/t¢,,.
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Figure 1. Velocity of the corner layer for a=1.5 (a:
m=1; b: m=4; ¢: m=9). The point in each curve indicate
the time of formation of corner layer(see below), and the
horizontal lines indicate the velocity at start-up (as de-
termined from the motion of the front).

It can be noticed that near the end of the waiting stage,
v, tends to a constant value ¢. This value coincides with
the velocity of the front at the start-up, that we can
determine independently of the motion of the corner
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layer. It can be appreciated that ¢ is approached more
rapidly for small m. A similar behavior can be observed
for all a.

To study the development of the corner layer we de-
fine its width Ax(f) as the width of the n,, peak at half
maximum, and its strength as W(f) = Nu(x.)/Ax[(f). To
compare the evolution of the corner layer for different m
and o we define the normalized strength as [I(r) =
W(yYY(-t,).
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Figure 2. Time and place of formation of the corner
layer for different m and «.

The n, peak develops gradually; then, strictly speak-
ing, a time of formation of the corner layer cannot be de-
fined. However, to quantify the n,, peak development, we
define a “time of formation” ¢. as the time when IT ex-
ceeds a threshold that we arbitrarily take as 100, and the
“place of formation” as x.(.). Notice that these definitions
depend on the determination of Ax.(f), that cannot be
achieved if the peak comprises very few grid points. For
this reason we accepted only the cases for which Ax.(¢.)
includes at least ten grid points.

In Fig. 2 we present ¢, vs. x(¢,). It can be appreciated
that, for fixed o, as m increases the corner layer develops
closer to the front and earlier during the waiting stage. On
the other hand, as o decreases for fixed m, the corner de-
velops closer to the front, but later during the waiting
stage.

lii. The waiting time and its bounds

For convenience we show in Fig. 3 the numerical ¢,
obtained in® for the initial conditions (8).

For each m, ¢, is an increasing function of ¢, and
tends to £, for a — . On the other hand, for a = 1, the
waiting time can be obtained from Egs. (2) and (3), and
its value is

t m m+1
1
h ’3(m+2) ©)

For the initial conditions (8), Eqgs. (2) and (3) do not give
a finite upper bound (except for o = 1), and the lower
bound is a poor estimate of ¢, (except for a = 1).
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Figure 3. Waiting time as function on o. for all m.

Our investigation is limited to a particular class of ini-
tial profiles, and the reader may wonder what happens in
problems involving initial conditions more general than
(8). In this connection it must be pointed out that the re-
sults of Fig. 3 may be used in combination with the previ-
ously mentioned Shifting Comparison- Principle, to find
lower and upper bounds on ¢,. Indeed, if we can find o,
and o, such that for every x € (-0 ,1]

Jouasjoasioata o

where g, (x) and g,»(x) are of the form (8), then ¢,y 2 ¢, 2
t,>. Clearly, as long as the bound (6) is more stringent
than the upper bound (3), we can achieve with adequate
choices of gqi(x) and gu(x) a better upper bound, since
our set of comparison functions is broader than that- used
by Vazquez (that corresponds to the special.choice o, =
in (10)). In the remaining cases we must compare the
bounds derived by our method with those given by (3) to
verify if they are actually an improvement.
As an example, we take the initial condmons

g(x)z{(l-e)sen (—2—x)+6sen ('fx) if0<x<l . (11)

0 ifx<0

where 0 <0 < 1. The initial profile (11) has been studied
to test the theoretical bounds. From Egs. (2) and (3) it can
be found that if 0 < 0 < 1/4 then ¢, = 2m[n*(m+2)(1-8)] ",
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but if 1/4 <0 < 1, t3 <t < 2m[n?® (m+2)(1-0)1"' (notice
that 7z must be found numerically and that the upper -

bound divergesas 6 — 1). .
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Figure 4. Theorenca/ and numerical bounds of L, for the
initial condztzon (11). . LT : ',

. For the proﬁle ¢ I) except for the special case 6= l
we cannot improve the lower bound. To test our upper
bounds we considered the case m = 1. The results are
shown in Fig. 4. It can be seen that the upper bound we
derive is more stringent than (3) for 6 = 0.55 and is al-

‘ways better than (6) as anticipated. For the special case 0

=1 we find also a lower bound that is roughly 50% higher
than that derived from (3).

In conclusion, we find that our numerical results can
be used to obtain useful bounds for the waiting time, in
instances when is not known exactly.
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