DISOCIACIÓN MULTIFOTÓNICA IR DEL SiF4

A. N. Alcaraz¹, J. Codnia², M. L. Azcárate²

1 FACULTAD INGENIERÍA, UBA
2 CENTRO DE INVESTIGACION EN LASERES Y APLICACIONES CEILAP (CITEFA-CONICET)
JUAN BAUTISTA DE LA SALLE 4397 - (B1603ALO) - VILLA MARTELLI - BUENOS AIRES – ARGENTINA

e-mail:aalcaraz@citefa.gov.ar, jcodnia@citefa.gov.ar, lazcarate@citefa.gov.ar

Se estudió la disociación multifotónica IR, DMFIR, del SiF₄ con un láser de CO₂ TEA sintonizado en la línea 9P(36), 1031 cm⁻¹, en función del número de pulsos y de la energía del mismo, y de la presión parcial de H₂. Se observó un aumento considerable de la eficiencia de disociación en presencia de H₂ como gas aceptor del radical SiF₃ respecto de la muestra pura. Se determinó la variación de la fracción disociada por pulso al utilizar distintos gases aceptores: O₂, CH₄, CH₃Cl y N₂. Tanto los reactivos como los productos fueron analizados por espectrometría IR.

A TEA CO₂ laser tuned to the 9P(36), 1031 cm⁻¹ emission line was used to study the dependence of the IRMPD of SiF₄ on the number of irradiation pulses, the pulse energy and the partial pressure of H₂. A considerable increases in the dissociation yield, compared with pure SiF₄, was achieved when H₂ as acceptor of the SiF₃ radical was added. The change in the SiF₄ fraction dissociated per pulse with the addition of different acceptor gases: O₂, CH₄, CH₃Cl and N₂ was determined. IR spectrometry was used to analyze the reactants and products.

I-INTRODUCCION

La separación isotópica mediante láser, LIS, ha sido utilizada en numerosos compuestos moleculares. El silicio es ampliamente utilizado en la industria electrónica y se ha comprobado que obleas de ²⁸Si puro presentan un aumento de un 60 % en la conductividad térmica respecto del silicio natural¹ (²⁸Si 93,23%, ²⁹Si 4,67% y ³⁰Si 3,10%). El SiF₄ es un precursor posible y poco estudiado para la separación isotópica del Si por láser.

La molécula de SiF₄ presenta una banda de absorción entre 1000 y 1040 cm⁻¹, debido a la vibración de estiramiento antisimétrico Si-F. Los modos de vibración correspondientes al ²⁸SiF₄, ²⁹SiF₄ y ³⁰SiF₄² presentan picos en 1031,8, 1022,9 y 1015,4 cm⁻¹, que son aproximadamente resonantes con las líneas de emisión de la banda de 9,4 µm del láser de CO₂. La irradiación con la línea 9P(36), 1031,5 cm⁻¹, resultaría en la disociación del ²⁸SiF₄ habiendo sido estimada en 50 la cantidad de fotones necesarios.

La DMFIR del SiF₄ ocurre según la siguiente reacción:

$$SiF_4 + nhv \xrightarrow{f} SiF_3 + F$$
 (1)

donde f es la fracción de moléculas de SiF₄ disociada por pulso.

Un único trabajo sobre la DMFIR del SiF₄ en presencia de H₂ utilizando pulsos de un láser de CO₂ fuertemente focalizado, da cuenta de una escasa selectividad isotópica³. Según sus observaciones, el escaso enriquecimiento obtenido se debería a reacciones del HF formado con productos que contienen Si.

En el presente trabajo se investigó la disociación multifotónica del SiF₄, DMFIR, en muestras puras y en mezclas con diferentes gases. En particular para las mezclas con H₂, se postuló un esquema cinético de

reacción para el cual se planteó y resolvió el sistema de ecuaciones diferenciales asociado.

II- PARTE EXPERIMENTAL

Las experiencias de DMFIR del SiF₄ se realizaron utilizando una celda de vidrio pyrex, 10 cm de largo y 4 cm de diámetro, con ventanas de KCl selladas con araldite. La operación de carga se realizó en una línea de vacío libre de grasa. Como fuente de excitación se utilizó un láser de CO₂ TEA pulsado, sintonizable, 1 J a 1 Hz, 180 ns duración del pulso. Se sintonizó en la línea 9P(36), 1031,5 cm⁻¹, y se focalizó en la celda con una lente de Ge de 12,7 cm de distancia focal obteniéndose en el foco un diámetro del haz de 1 mm. El área del haz en el foco se determinó haciéndolo incidir sobre un vidrio ahumado y midiendo el diámetro del perfil de la mancha con un perfilómetro. Las concentraciones de los reactivos y de los productos se determinaron mediante espectrometría IR con un espectrómetro FTIR Perkin Elmer, System 2000. En todas las experiencias la presión parcial de SiF₄ fue 0,4 Torr. La presión de H₂ se varió entre 0,01 y 5 Torr. La presión parcial de los gases CH₄, CH₃Cl, N₂ y O₂ fue 1,6 Torr.

III- RESULTADOS

La Figura 1 muestra la fracción disociada por pulso de SiF₄, γ , en función de la energía del láser en el rango 0.35-1 J, para muestras de 0,4 y 1,6 Torr de presiones parciales de SiF₄ y H₂, respectivamente. La dependencia de la fracción disociada por pulso de la energía, E, se puede describir como:

$$\gamma \propto E^{2,4}$$

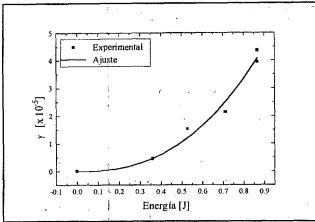


Figura 1: Fracción disociada de SiF4 vs. energía por pulso.

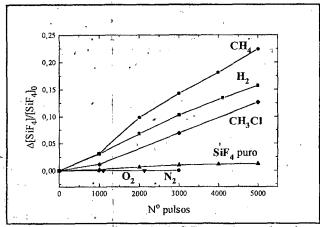


Figura 2: Fracción disociada de SiF₄ vs. número de pulsos para diferentes gases!

La Figura 2 muestra la fracción disociada de SiF4 en función del número de pulsos utilizando distintos gases aceptores. Se observa que el CH₄ es el más eficiente.

En la Figura 3 se muestra la desaparición de reactivo SiF₄ y la aparición del producto SiF₃H en función del número de pulsos para una presión parcial de 1,6 Torr de H₂ y 2 Torr de presión total de una muestra irradiada con una energía de 1 J por pulso.

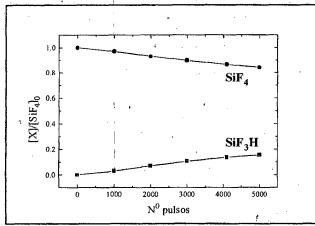


Figura 3: Disociación del SiF₄ y producción de SiF₃H vs. número de pulsos.

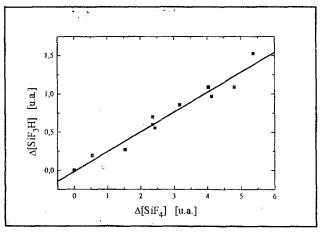


Figura 4: Cantidad generada de SiF3H por pulso vs. la cantidad consumida de SiF4.

La cantidad de SiF₃H generada en función de la cantidad de SiF₄ consumida, cada 1000 pulsos para presiones parciales de H₂ en el rango 0,01 - 5 Torr, se muestra en la Figura 4. Se obtuvo una relación lineal con un coeficiente de correlación de 0,98.

IV- MODELO

Se propuso un esquema cinético para describir los resultados experimentales. Una fracción f de moléculas de SiF4 es disociada por el láser, generándose SiF3 y F, ec. 1.

El SiF₃ y el F generados reaccionan a través de los siguientes canales:

$$SiF_3 + SiF_3 \xrightarrow{\kappa_1} Si_2F_6 \tag{3.1}$$

$$SiF_3 + H_2 \xrightarrow{\kappa_2} SiF_3H + H$$
 (3.2)

$$SiF_3 + F \xrightarrow{\kappa_3} SiF_4$$
 (3.3)

$$H_2+F \xrightarrow{\kappa_4} HF+H$$
 (3.4)

En ausencia de H₂ se encontró que la desaparición del radical SiF3 ocurre fundamentalmente por la reacción (3.3), con el F regenerando SiF₄. Esto llevó a agregar distintos gases aceptores para capturar a los radicales provenientes de la disociación. El agregado de H_2 como gas aceptor de los radicales F y SiF₃, ecs. (3.2) y (3.4), inhibe la reacción de recombinación inversa. En la Figura 5 se muestra la fracción disociada por pulso, γ, en función de la presión de H₂. A altas presiones γ disminuye debido a la desactivación vibracional por colisiones con el SiF4 excitado. En el rango de baja presión domina la reacción de recombinación inversa (3.3) regenerando hasta un 90 % del reactivo.

A partir del esquema cinético propuesto se planteó el sistema de ecuaciones diferenciales asociado:

$$\frac{d}{dt}[SiF_4] = k_3[SiF_3][F]$$

$$\frac{d}{dt}[Si_2F_6] = 2k_1[SiF_3]$$

$$\frac{d}{dt}[SiF_3] = -2k_1[SiF_3]^2 - k_2[H_2][SiF_3] - k_3[F][SiF_3]$$

$$\frac{d}{dt}[F] = -k_3[F][SiF_3] - k_4[H_2][F]$$

$$\frac{d}{dt}[H_2] = -k_2[H_2][SiF_3] - k_4[F][H_2]$$

Dado que no hay datos sobre las velocidades k_1 , k_2 y k_3 se resolvió dicho sistema en forma aproximada estimando la fracción de SiF₃ y F que pueden recombinarse regenerando SiF₄ modificando así la fracción real disociada por pulso. A partir de esta estimación se obtuvo una expresión para la fracción efectiva disociada de SiF₄ la cual se utilizó, luego de ajustar los datos experimentales, para obtener valores aproximados de las tres velocidades. Utilizando estos valores como punto de partida se ajustaron los datos experimentales con el resultado de la integración numérica. En la Figura 5 se muestran los datos experimentales y el ajuste de los mismos con la expresión aproximada y la integración numérica observándose una buena concordancia.

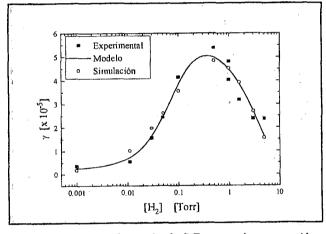


Figura 5: Fracción disociada de SiF4 por pulso vs. presión parcial de H_2 .

V- CONCLUSIONES

Se estudió la DMFIR del SiF₄ en celda estanca con un láser de CO₂ TEA.

Se propuso una ley potencial para la relación entre la fracción disociada de SiF₄ con la energía del láser, obteniéndose un valor de 2,4 para el exponente.

Si bien la DMFIR de esta molécula es muy poco eficiente, a diferencia de lo que ocurre con otras moléculas pequeñas, se observa un fuerte aumento de la fracción disociada por pulso con la energía del pulso.

La reacción de recombinación inversa del SiF₄ resultó ser el canal principal en la muestra pura resultando en una fracción efectiva disociada por pulso 10 veces inferior a la producida por el láser.

El agregado de gases aceptores inhibe la reacción de regeneración del reactivo siendo el CH₄ el más eficiente.

Referencias

- K.-I. Takyu, K. Itoh, V.I. Ozhogin, Jpn. J. Appl. Phys., 38, L 1493 (1999)
- 2- J. Heicklen and V. Knight, Spectrochim., Acta 20, 295 (1964)
- 3- J.L. Lyman, S.D. Rockwood, J. Appl. Phys., 47, 595 (1976)