MEDIACIÓN DE OZONO TOTAL
EN LA PRIMAVERA DE 1993

M. Gabriela Nicora*
Centro de Investigaciones Ópticas, CIOp (CIC-CONICET),
C.C. 124, 1900 La Plata,

Jorge O. Tocho
Departamento de Física, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata y CIOp.

RESUMEN

Se presenta el análisis de los resultados obtenidos mediante una red de medidores portátiles de ozono instalados durante 1993 en Río Grande, Bariloche, Mar del Plata, Tandil, Mercedes (Pcia. de Bs. As.), San Luis, Rosario y Salta. Los resultados obtenidos coinciden dentro de un 7 % con los datos suministrados por NASA correspondientes al instrumento TOMS instalado en el satélite METEOR 3. Alrededor del día 27 de setiembre se detectó, en diferentes estaciones, una disminución significativa de la cantidad de ozono total. Este hecho coincide con la mayor penetración del agujero de ozono en el continente para ese año. Se analizaron los posibles mecanismos que expliquen este fenómeno.

ABSTRACT

Results of a total ozone measuring network installed at Río Grande, Bariloche, Mar del Plata, Tandil, Mercedes (Pcia. de Bs. As.), San Luis, Rosario and Salta during 1993, are analyzed. Results are within 7 % of values given by NASA for its TOMS instrument installed at METEOR 3. On September 27th decreasing values of total ozone were detected on several stations. This fact was coincident with the maximum expansion of ozone hole during 1993. Solar flares and stratospheric dynamics were studied in order to explain this phenomena.

INTRODUCCIÓN

El adelgazamiento de la capa de ozono estratosférico es considerado como uno de los problemas ambientales actuales más serios. La destrucción del ozono sobre el continente Antártico durante la primavera, fenómeno que fue descubierto hace ya más de una década, continúa siendo uno de los temas fundamentales de investigación a nivel mundial.

Estudios más recientes han encontrado que también existe una disminución global de ozono en las latitudes medias y altas. Esta variación se estima en un 2,5 % global en la última década. En Argentina se han estimado disminuciones que oscilan entre 0 % en la zona tropical hasta aproximadamente 10 % por década en Tierra del Fuego. La zona central y más poblada experimenta una

*Becaria Entrenamiento CIC-BA
variación del 4 ó 5 % por década.\(^1\)

Debido a lo serio de esta situación y a la escasa información directa de las variaciones estacionales y zonales del contenido de ozono atmosférico en el país, se instrumentó una red de medidores portátiles de ozono (MPO). Se presentan aquí los resultados obtenidos mediante esta red para la primavera de 1993. Este periodo comprende al 27 de setiembre, día en el cual se observó la mayor disminución en el contenido de ozono en el sur de nuestro país.

RED DE MEDICIÓN DE OZONO TOTAL

El motivo de este proyecto se centra en la necesidad de realizar mediciones terrestres de ozono, cubriendo geográficamente la mayor parte del país. Para esto se contó con la colaboración de investigadores españoles de la Universidad Autónoma de Madrid. Mediante esta colaboración se diseñó, construyó, instaló y operó una red de 16 equipos portátiles de medición de ozono.\(^2\)

Los medidores fueron instalados en forma latitudinal en nuestro país y en Chile, en las ciudades de Río Grande, Bariloche, Tandil, La Plata, Salta, San Luis, Mercedes (Pcia de Bs. As.), Arica, Antofagasta, Rosario, Carmen de Patagones, Mar del Plata y Valparaíso.

FUNDAMENTO DEL FUNCIONAMIENTO DE LOS MEDIDORES

Los instrumentos son medidores portátiles de irradiancia espectral solar directa que miden en dos regiones del UV-B. Para una de ellas (300 nm) la radiación que llega a la Tierra es gobernada principalmente por la absorción del ozono; en la otra región (313 nm) la acción de este gas es casi nula y la atenuación atmosférica se debe casi exclusivamente a la dispersión Rayleigh de los gases mayoritarios y a la dispersión Mie de los aerosoles.

Puede demostrarse que si la señal del fotodetector sensible solamente a la radiación de 300 nm (L1) se divide por la señal del otro fotodetector sensible a 313 nm (L2), el cociente (R = L1 / L2) tiene una variación importante y monótona con el contenido de ozono.

Un tratamiento sencillo de la atenuación atmosférica conduce a poder cuantificar la cantidad total de ozono atmosférico (UD, en unidades Dobson) en función de la masa óptica relativa (mr) y del logaritmo de la relación entre las dos señales que llegan al instrumento. En efecto, la intensidad directa que llega a cada detector en un intervalo pequeño de longitudes de onda centrado en \(\lambda\), puede expresarse de la siguiente manera:

\[
\Omega_\lambda = 10^\lambda \exp (-k\lambda \times mr - k\lambda x \times mr x DU),
\]

en la cual se tiene en cuenta la dispersión a través de k\(\lambda\) y la absorción del ozono, mediante el coeficiente k\(\lambda\). La relación R definida más arriba puede entonces escribirse:

\[
R = (10^\lambda_1 / 10^\lambda_2) \exp -[(k\lambda_1 - k\lambda_2) x mr + (k\lambda_1 - k\lambda_2)x mr x DU],
\]

de manera que:

\[
\ln (R) = \ln (R_0) - k\lambda + \Delta k\lambda x DU] x mr,
\]

donde \(\Delta k\lambda = k\lambda_1 - k\lambda_2\), y \(\Delta k\lambda = k\lambda_1 - k\lambda_2\).

Despejando ahora DU obtenemos:

\[
DU = [\ln (R) - \ln (R_0)] / (mr x \Delta k\lambda),
\]

donde hemos hecho la suposición central de que al tomar las medidas en días claros y en dos longitudes de onda muy próximas se puede despreciar el término que contiene a \(\Delta k\lambda\). Esta expresión muestra una
dependencia lineal de la cantidad de ozono con $\ln(R)$, por lo que puede escribirse:

$$UD = \frac{[A \ln (R) - B]}{mr},$$ \hspace{1cm} (1)

donde A y B son constantes que deben determinarse para cada equipo.

CALIBRACIÓN

Para determinar las constantes de calibración se utilizaron los datos de ozono total para el periodo comprendido entre el 1ro. de septiembre y el 30 de octubre de 1993, suministrados por NASA de su medidor TOMS instalado en el satélite METEOR 3.\(^3\) La Fig. 1 muestra los resultados obtenidos en la ciudad de Río Grande (54 S, 68 W), donde las constantes de calibración determinadas fueron: $A = 454$ y $B = 723$. Se ha estimado un error relativo del 7% en los valores de ozono al ajustar convenientemente estos resultados a los suministrados por NASA.

ANÁLISIS DE LOS RESULTADOS

Uno de los resultados más importantes encontrados al analizar los datos obtenidos para el comienzo de la primavera, fue la alta correlación entre los mínimos más destacados de diferentes estaciones. Estos ocurrieron el 27 de septiembre y el 3 de octubre en Río Grande. Con una diferencia de no más de un día esos mínimos fueron detectados en Bariloche, Mar del Plata, Tandil y San Luis (Fig. 2).

Una primera hipótesis es que este fenómeno podría deberse a la aparición de flares solares. Es aceptado que los flares solares son acompañados por protones de alta energía que llegan a la Tierra (fundamentalmente en las altas latitudes), produciendo grandes concentraciones de óxidos de nitrógeno y afectando de esta manera la concentración de ozono.

Si bien han sido reportados flares solares de gran magnitud los días 27 de septiembre (M1.8) y el 3 de octubre (M1.4), otros flares que ocurrieron en el mismo período no pudieron ser correlacionados con anomalías importantes en el contenido de ozono.\(^4\) Analizando los datos satelitales para esta época del año se observa un esquema circulatorio con vientos estratosféricos de oeste a este que penetran nuestro territorio desde Chile. También se encuentra una situación de valores mínimos que une la región antártica con la ecuatorial a través del Océano Pacífico. Esta zona se mueve rápidamente hacia el este como puede verse en la Fig. 3. Este mecanismo también podría ser el responsable de la correlación entre los mínimos.

CONCLUSIONES

Los valores de ozono total determinados con los equipos MPO en días claros coinciden dentro de un error del 7% con los datos suministrados por el satélite METEOR 3. La correlación entre los valores mínimos del día
Figura 2: Resultados de MPO para Rio Grande, Bariloche y Tandil, donde se observa la fuerte correlación entre los mínimos.

Figura 3: Datos TOMS del hemisferio sur para los días: 269 (a), 270 (b) y 271 (c). Se observa el movimiento de la zona de valores mínimos de oeste a este y su prolongación atenuada hacia latitudes menores.
27 de septiembre de 1993 medidas en Río Grande, Bariloche, Tandil, Mar del Plata y San Luis sugiere que el esquema circulatorio de oeste a este para los vientos estratoféricos que penetran nuestro territorio desde Chile, podría ser responsable del comportamiento del ozono en nuestro país. Este fenómeno es de vital importancia a la hora de realizar pronósticos con miras a elaborar un índice de radiación ultravioleta.5

AGRADECIMIENTOS

Agradecemos a todas las personas que colaboran en la tarea de obtención de datos y que mantienen activa la red. Este trabajo fue financiado parcialmente mediante el subsidio "Red Bonarense de Sensores de Ozono" del Comisión de Investigaciones Científicas de la Provincia de Buenos Aires y por el contrato CIII- CT93-0316 de la Commission of the European Communities.

REFERENCIAS

3. J. Herman. Goddard Space Flight Center. Greenbelt, MD 20771. INTERNET.
