MIGRACIÓN ANISOTRÓPICA DE BORDE DE GRANO
PARTE II: TRATAMIENTO NUMÉRICO

C. L. Di Prinzio, O. B. Nasello*, B. J. Gonzalez Kiegel
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba,
Medina Allende y Haya de la Torre, Ciudad Universitaria, (5000) Córdoba.

En este trabajo se analizan en forma numérica soluciones de la ecuación de movimiento de bordes de grano bidimensionales, con energía superficial que depende de la inclinación del borde de grano. Se utilizan modelos simples de energía superficial y se obtienen valores de velocidad y formas de equilibrio de los bordes de grano, para una configuración de tipo Sun y Bauer. Se observa que pequeñas variaciones en la energía superficial, producen grandes cambios en el movimiento del borde de grano.

I. INTRODUCCIÓN

Cuando la energía del límite de grano depende de la inclinación del mismo, se puede demostrar que:
- La ecuación de movimiento de un borde de grano plano viene dada por:

\[
r \frac{dr}{dt} = - \frac{\partial \beta}{\partial \theta} M \left[\gamma + \frac{\partial^2 \gamma}{\partial \beta^2} \right]
\]
(1)

donde \(M \) es la movilidad de los límites de grano y las definiciones de \(r, \theta \) y \(\beta \) se muestran en la Fig. 1.

- Si el borde de grano se mueve preservando la forma, es decir si \(\partial \beta / \partial \theta \) es independiente del tiempo, la evolución temporal de las coordenadas del límite de grano viene dada por:

\[
r^2(\theta, t) = 2 R^2(\theta) ct + r^2(\theta, 0)
\]
(2)

donde la forma del borde de grano, \(R(\theta) \), se obtiene resolviendo numéricamente la siguiente ecuación:

\[
c = - \frac{1}{R^2(\theta)} \frac{\partial \beta}{\partial \theta} M \gamma_{\theta \theta}
\]
(3)

conde \(c = \) cte y \(M \gamma_{\theta \theta} = M (\gamma + \partial^2 \gamma / \partial \beta^2) \).

- Cuando el borde de grano tiene una forma similar a la propuesta por Sun y Bauer (ver Fig.1), la variación temporal de la coordenada \(a \) del borde de grano es:

\[
a^2(t) = B t + a^2(0)
\]
(4)

donde \(B \) se puede escribir como:

\[
B = -2 \left. \frac{\partial \beta}{\partial \theta} \right|_{\theta=0} M \gamma_{\theta \theta} \big|_{\theta=0}
\]
(5)

o alternativamente como:

\[
B = 2 F(\alpha, \gamma) M \gamma_{\theta \theta}
\]
(6)

con \(F(\alpha, \gamma) \) y \(M \gamma_{\theta \theta} \) dados por:

\[
F(\alpha, \gamma) = (\pi / 2 - \alpha) \int_0^\alpha \frac{R^2(\theta)}{R^2(\theta) d\theta}
\]
(7)

Fig. 1. Bicristal con configuración de tipo Sun y Bauer.

*Miembro del CONICET

361 - ANALES APA, VOL. 5

ROSARIO, 1993 - 361
\[[M \gamma_{ef}] = \frac{\int_{\alpha}^{\pi/2} M \gamma_{ef} \, d\beta}{(\pi/2 - \alpha)} \]

(8)

En este trabajo se propone formas funcionales de y vs. \(\beta \) y se analizan las soluciones de la ecuación de movimiento.

II. RESULTADOS

La Eq. (3) fue resuelta por diferencias finitas para diferentes funciones \(\gamma(\beta) \). Dada \(\gamma(\beta) \) y un valor de \(c \) el proceso de cálculo se realizó haciendo incrementos en \(\theta \) a partir de \(\theta = 0 \) y considerando \(R(0) = 1 y \partial R / \partial \theta \big|_{\theta=0} = \pi / 2 \).

Las funciones de \(\gamma(\beta) \) utilizadas fueron tres. Una función período \(\pi / 2 \) con mínimo en \(\beta = \delta \) definida a partir de la función:

\[\gamma(\beta) = \gamma_{\max} \left(1 - 0.1 \cos(\beta - \delta)\right) \]

(9)
y funciones de período \(\pi / 2 \) y \(\pi \) y mínimo en \(\beta = \delta \), definidas a partir de

\[\gamma(\beta) = \gamma_{\max} \left(1 - 0.1 \exp\left(-\frac{(\beta - \delta)^2}{2a^2}\right)\right) \]

(10)

Al analizar los resultados obtenidos con cada una de estas funciones las referiremos como casos A, B, y C respectivamente.

II.1. - CASO A

II.1.1. - Curvas de Equilibrio

Los resultados obtenidos muestran que cuando \(c < 0 \), las formas de los bordes de grano son acotadas y en algunos casos cerradas. En la Fig. 2, se muestra a manera de ejemplo, la curva \(R(\theta) \) correspondiente a \(c = -0.864 \) y \(\delta = \pi / 4 \). Se observa que el borde del grano presenta facetas para \(\beta = \pm \pi / 4 \pm \pi / 2 \). Los planos de facetas coinciden con los planos donde \(\gamma \) es mínimo. Vemos así que estas curvas concuerdan con las formas de equilibrio de Gibbs Wulff.

Cuando \(c > 0 \), las formas de los bordes de grano son similares a hipérbolas con ángulos asintóticos \(\alpha \) que dependen de \(c \) y \(\delta \). En la Fig. 3 se muestran dos curvas \(R(\theta) \) obtenidas con valores de \(c \) tales que \(\alpha = 25^\circ \) y la curva correspondiente que se obtiene cuando \(M \gamma = \text{cte} \). En esta figura se observa que las tres curvas son similares aunque los valores de \(\frac{\partial R}{\partial \theta} \big|_{\theta=0} \) y \(F(\alpha, \gamma) \) parecen ser diferentes. Para visualizar estas diferencias en más detalle en la Fig. 4 se muestran los valores de \(\frac{\partial R}{\partial \theta} \big|_{\theta=0} \) y \(F(\alpha, \gamma) \) en función de \(\delta \), para distintos ángulos \(\alpha \), junto con los valores de \(f(\alpha) = \frac{\partial R}{\partial \theta} \big|_{\theta=0} \) obtenidos para \(M \gamma = \text{cte} \). En la Fig. 4a se observa que las variaciones de \(\frac{\partial R}{\partial \theta} \big|_{\theta=0} \) presentan en general diferencias notables con \(f(\alpha) \), mientras que en la Fig. 4b se observa que \(F(\alpha, \gamma) \) no es muy diferente de \(f(\alpha) \). Por lo tanto, si en una experiencia, se sigue el método de Sun y Bauer, y se obtiene \(B/2 f(\alpha) \), cuando \(\gamma \) dependa de la inclinación, este valor estará más próximo a \(M \gamma_{ef} \) que a \(M \gamma_{ef} \big|_{\theta=0} \).

Fig. 2: \(R(\theta) \) correspondiente a \(c = -0.864 \) y \(\delta = \pi / 4 \).

Fig. 3: \(R(\theta) \) correspondientes a valores de \(c \) tales que \(\alpha = 25^\circ \). Curva a) \(\delta = 0 \); b) \(d = \pi / 4 \); c) \(M \gamma = \text{cte} \).
II.1.2. — Evolución temporal de los bordes de grano tipo Sun y Bauer.

La pendiente B de la relación lineal a^2 vs. t es una medida de la rapidez con que evolucionan los bordes de grano en $\theta = 0$ por lo tanto $\beta = \pi/2$. En la Fig. 5 se muestran los valores de la pendiente B en función de δ parametrizados con el ángulo α, junto con lo que se obtienen con $M\gamma = \text{cte.}(B_{sb})$. Se observa que para cada α, los valores de B oscilan alrededor de B_{sb} y que los valores de δ en los cuales B es mínimo son en general distintos de $\pi/2$. Si recordamos que la función $\gamma(\beta)$ dada por la Eq. (9) alcanza su valor mínimo en $\beta = \delta$, de la Fig. 5 podemos deducir que los mínimos de B no concuerdan con los mínimos de γ en $\beta = \pi/2$. En consecuencia, los presentes resultados muestran que la velocidad de migración del borde de grano en $\theta = 0$, no está regida por el valor de γ en ese punto, sino por los valores de γ a lo largo de todo el borde de grano.

II.2. —CASOS B Y C

Las formas de los bordes de grano obtenidos encontrados con las funciones $\gamma(\beta)$ correspondientes a los casos B y C son similares a las obtenidas en el caso A. Sin embargo los valores encontrados de la pendiente B son diferentes. En la Fig. 6a y 6b se muestran como ejemplo los B en función de δ para
Fig. 6: Valores de la pendiente B en función de δ para α = 15°. a) y b) casos B y C respectivamente.

α = 15°, casos B y C respectivamente. Comparando las Fig. 6a y 6b entre sí y ambas con la Fig. 5, se deduce que tanto la localización de los mínimos, como la amplitud de las oscilaciones de B dependen fuertemente de la forma funcional de γ y no de sus valores máximos y mínimos (Notemos que las tres funciones γ estudiadas tienen γ_{max} = 1 y γ_{min} = 0.9).

III. CONCLUSIONES

Los presentes resultados muestran que cuando γ depende de la inclinación, los bordes de grano tipo SB migran manteniendo una forma R(θ) similar a la que se encuentra cuando Mγ = cte. Estas curvas R(θ), sin embargo, dependen de la forma funcional de γ siendo en general ∂β/∂θ_{θ=0} muy diferente de f(α), valor que se encuentra cuando γ = cte. Las áreas bajo las curvas R(θ), caracterizadas por la función F(α, γ), dependen también de γ, pero sus variaciones con respecto a la inclinación del borde de grano son menores que las variaciones de ∂β/∂θ_{θ=0}. En cuanto a la evolución temporal de estos bordes de grano se ha observado que la pendiente B de la relación lineal a² vs. t, depende notablemente de la forma funcional de γ.

En consecuencia podemos concluir que el estudio experimental de la variación de B con la inclinación del borde de grano es un método sensible a las variaciones de la energía del borde de grano con la inclinación del mismo.

REFERENCIAS