DEPENDENCIA ENERGETICA DE DOSIMETROS TERMO-LUMINISCENTES DE LIF-7 PARA ELECTRONES DE ALTAS ENERGÍAS

Gustavo H. Olivera
Instituto de Física Rosario (CONICET) Avenida Pellegrini 250, 2000 Rosario.

Margarita Saraví

En el presente trabajo se estudia la dependencia energética de dosímetros termoluminiscentes (TLD) de fluoruro de litio (LiF-7) chips y rods cuando son irradiados en haces de electrones de altas energías. Este estudio se realiza en forma teórica y experimental, utilizando varias de las teorías de cavidad desarrolladas por diversos autores hasta el presente. Se encuentra una dependencia energética significativa, lográndose un ajuste entre teoría y experimento mejor del 2% para los rods en haces de electrones de entre 5 MeV hasta 112 MeV. La exactitud que se logra con la utilización de estas teorías permite realizar una medición en cualquier energía de electrones a partir de la calibración de los detectores TLD en haces de ^{60}Co.

I. INTRODUCCIÓN

El empleo de dosímetros termoluminiscentes (TDL) en el campo de la radioterapia es de utilidad en situaciones tales como dosimetrías in vivo, programas de garantías de calidad (QA), etc. En el caso de radioterapia la dosis absorbida en un punto de referencia debe ser determinada con una incertidumbre total del $\pm 3\%$. Es necesario por lo tanto conocer la respuesta en función de la energía de los dosímetros cuando son usados en haces de electrones de altas energías con el objeto de tenerla en cuenta en el cálculo de la dosis.

Cuando se coloca un detector para medir dosis absorbida por un medio expuesto a radación, se coloca un medio sensitivo (cavidad) que en general constituye una discontinuidad para la radación. Las teorías de cavidad relacionan la dosis absorbida en el medio (D_m), con la absorbida en la cavidad (D_c),

\[D_m = \frac{1}{f_{cm}} \cdot D_c \]

(1)

y se define $f_{cm} = \frac{D_c}{D_m}$, $f_{ox} = \frac{D_{c ox}}{D_{m ox}}$.

Suministrando la misma dosis al medio ya sea en ^{60}Co, electrones o X de alta energía resulta

\[f^{\text{ez}}_{60\text{Co}} = \frac{f_{e ox}}{f^{\text{ez}}_{60\text{Co}}} = \frac{D_{c ox}}{D_{m ox}} \]

(3)

Si la señal termoluminiscente es proporcional a la dosis se obtiene:

\[f^{\text{ez}}_{60\text{Co}} = \frac{\text{TL por unidad de dosis absorbida en el medio } e ox}{\text{TL por unidad de dosis absorbida en el medio } w_{60\text{Co}}} \]

(4)

De esta forma, normalizando los valores de la señal termoluminiscente por unidad de dosis absorbida en el medio cuando se irradiía en un haz de electrones o fotones de alta energía, con respecto a los mismos valores cuando se irradiía en ^{60}Co, es posible obtener la variación de respuesta de los dosímetros en función de la energía de los haces utilizados.

II. TEORÍAS UTILIZADAS

1. BURLIN: Válida para fotones y electrones fotones:

\[f_{cm} = d \cdot S_{cm} + (1 - d) \cdot \left(\frac{\mu_{en}}{\rho} \right)_{cm} \]

(5)

electrones:

\[f_{cm} = d \cdot S_{cm} \]

(6)
con:
\(S_{cm} \) = relación de stopping power medio cavidad.
\(\mu_{en} \) = coeficiente de absorción energética

\[
d = \frac{\int_{a}^{g} \exp(-\beta x) \, dx}{\int_{a}^{g} \, dx}
\]

\(\beta \) = coeficiente de atenuación másico de electrones en el material

\(g = 4 \frac{V}{A} \) camino promedio de los electrones en la cavidad
\(V \) = volumen de la cavidad, \(A \) = área de la cavidad

2. ALMOND: Válida para fotones y electrones, en fotones es igual que Burlin.

\[
f_{cm} = d \cdot S_{cm} + (1 - d) \cdot \left(\frac{Z}{A} \right)_{cm}
\]

(7)

3. HOLT: Válida para electrones

\[
f_{cm} = S_{mc} \left(E \right) \left[1 + h_{c} \cdot \left(S_{mc} \left(E \right) - 1 \right) \right]
\]

(8)

con: \(h_{c} = \frac{\langle x \rangle}{R_{max}} \ll 1 \), \(\langle x \rangle \) = camino promedio, \(R_{max} \) = rango máximo.

4. FREGENE: Válida para fotones y electrones.

\[
\frac{1}{f_{cm}} = \frac{1}{S_{mc}} + \left(1 - \frac{1}{S_{mc}} \right) \frac{t}{r_{c}}
\]

(9)

\(t \) = espesor del dosímetro, \(r_{c} \) = rango máximo de los electrones secundarios.

5. ONGULEYE- ATTIX: Se aplica a \(^{60}\text{Co}\), propone modificaciones y aclaraciones teóricas respecto de la emisión Compton de electrones. Respecto de la de Burlin se modifica \(g \) siendo ahora: \(g = 1.2 \cdot t \)

6. HOROWITZ: Se aplica solo a \(^{60}\text{Co}\), la fórmula es:

\[
f_{cm} = \left(\frac{Z}{A} \right)_{cm} \left\{ 1 + d \cdot \left[\left(\frac{Z}{A} \right)_{mc} \cdot \frac{1}{S_{mc}} - 1 \right] \right. \\
\left. + d \cdot \left[\left(\frac{Z}{A} \right)_{mc} \cdot \frac{\mu_{en}}{\rho} \right]_{cm} - 1 \right\}
\]

(10)

para \(d \) se utiliza el camino \(g \) y para \(d' \) el \(g' \) donde:

a)

\[
g = \int_{0}^{\pi} \frac{t P(\theta)}{\cos(\theta)} \, d\theta = 1.539 \cdot t
\]

(11)

\[
g' = 4 \cdot \frac{V}{A}
\]

(12)

b)

\[
g' = \int_{0}^{\pi} \frac{t P(\theta)}{\cos(\theta)} \, d\theta = 1.539 \cdot t
\]

(13)

\[
g = 4 \cdot \frac{V}{A}
\]

(14)

\(P(\theta) \) = función distribución de probabilidad angular de los electrones (Klein - Nishina).

III. DISPOSITIVO EXPERIMENTAL

Se utilizaron chips y rods. Se realizaron irradiaciones a 1.5 cm de profundidad, y se varió la energía en superficie (ya que son importantes los efectos de acumulación de carga); de esta forma se obtiene un amplio rango de energías en profundidad, en zonas donde hay una importante variación del stopping power. Para las irradiaciones se utilizó un acelerador lineal Siemens Mevatron 6764 y una bomba de \(^{60}\text{Co}\) Theratron 80. Primamente se determinó con cámara de placas paralelas PTW Markus en electrones, y cilíndrica PTW en \(^{60}\text{Co}\), el tiempo o unidades de monitor para tener a la profundidad de irradiación una dosis de 1 Gray.

Se colocaron 5 TLD para cada energía a la profundidad de irradiación, los cuales tenían precisión y exactitud menor igual al 1%. Se irradió, leyó y se corrigió cada lectura con el factor de sensibilidad, y se promediaron los valores. Las i-irradiaciones se hicieron con campos de 20x20 cm², en isocentro y con los TLD alrededor del eje.
IV. RESULTADOS Y CONCLUSIONES

En las tablas I y II se presentan los resultados obtenidos con los cálculos de las diversas teorías y los resultados experimentales; en la tabla el nombre en la parte superior indica la teoría utilizada para electrones y en la parte inferior la utilizada en 60Co.

Para los cálculos teóricos era posible variar diferentes parámetros o fórmulas; por ejemplo β, E_{max}, rangos, etc. Los resultados obtenidos varían de estos parámetros difieren en menos del 1%.

En las Figs. 1 y 2 se representan los diferentes valores teóricos y experimentales de $f_{^{60}\text{Co}}^{\text{e}_0}$ en función de la energía.

Para rods se puede ver que la teoría que mejor ajusta a los resultados experimentales es la de Holt normalizada a Fregene. Excepto la de Burlin normalizada a Burlin las demás teorías siguen las tendencias y, a pesar de no caer dentro de la franja de error no difieren de los valores medidos en más de 1.8%.

Para chips no hay una teoría que caiga dentro del intervalo de error pero exceptuando Burlin normalizada a Burlin, la mayor discrepancia es del 6.4%.

Es probable que los acuerdos teóricos experimentales sean mejores en los rods que en los chips, ya que estos últimos son en realidad cavidades más grandes y por lo tanto deforma más el espectro electrónico (conviene recordar que la mayor limitación a las teorías de cavidad utilizadas es el cambio en el tamaño de la cavidad).

En base a los resultados obtenidos se puede observar que no realizar correcciones por dependencia energética introduce diferencias de hasta un 15%. Con teorías relativamente simples se puede conocer la dependencia energética con un error entre 1% y 2% según el detector y teoría utilizados, esto mostraría que se trata de un efecto cavidad y no de una dependencia intrínseca del detector.

El sistema permite calibrar los TLD en base 60Co y extrapoló a las diferentes energías de electrones. La aplicación de este método es simple y se obtienen notables beneficios en la exactitud del sistema.

Además en mediciones in-vivo, donde el detector esté colocado dentro del paciente a una profundidad conocida, el único dato necesario para conocer la dosis es la energía en superficie.

FACTORES $f_{^{60}\text{Co}}^{\text{e}_0}$ PARA CAVIDADES
Tabla I
TLD (LiF) TIPO ROD (1 x 1 x 6 mm³)

<table>
<thead>
<tr>
<th>ENERGY MeV</th>
<th>ALMOND BURLIN</th>
<th>BURLIN</th>
<th>ALMOND ATTIX</th>
<th>HOLT ATTIX</th>
<th>HOLT FREGENE</th>
<th>EXP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>0.989</td>
<td>0.701</td>
<td>0.989</td>
<td>0.946</td>
<td>0.927</td>
<td>0.928</td>
</tr>
<tr>
<td>5.9</td>
<td>0.991</td>
<td>0.740</td>
<td>0.991</td>
<td>0.960</td>
<td>0.941</td>
<td>0.930</td>
</tr>
<tr>
<td>6.6</td>
<td>0.992</td>
<td>0.765</td>
<td>0.992</td>
<td>0.966</td>
<td>0.947</td>
<td>0.933</td>
</tr>
<tr>
<td>9.0</td>
<td>0.995</td>
<td>0.824</td>
<td>0.994</td>
<td>0.978</td>
<td>0.959</td>
<td>0.948</td>
</tr>
<tr>
<td>10.1</td>
<td>0.997</td>
<td>0.843</td>
<td>0.996</td>
<td>0.983</td>
<td>0.963</td>
<td>0.949</td>
</tr>
<tr>
<td>11.4</td>
<td>0.999</td>
<td>0.861</td>
<td>0.998</td>
<td>0.985</td>
<td>0.968</td>
<td>0.951</td>
</tr>
</tbody>
</table>

Tabla 1: Datos teóricos y experimentales del factor $f_{\omega_{Co}}$ para rods.

Tabla II
TLD (LiF-7) TIPO CHIP (1/8 x 1/8 x 0.035 in³)

<table>
<thead>
<tr>
<th>ENERGY MeV</th>
<th>ALMOND BURLIN</th>
<th>BURLIN</th>
<th>ALMOND ATTIX</th>
<th>HOLT ATTIX</th>
<th>HOLT FREGENE</th>
<th>EXP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>0.989</td>
<td>0.651</td>
<td>0.946</td>
<td>0.946</td>
<td>0.935</td>
<td>0.884</td>
</tr>
<tr>
<td>5.9</td>
<td>0.991</td>
<td>0.695</td>
<td>0.950</td>
<td>0.960</td>
<td>0.948</td>
<td>0.910</td>
</tr>
<tr>
<td>6.6</td>
<td>0.992</td>
<td>0.722</td>
<td>0.965</td>
<td>0.965</td>
<td>0.954</td>
<td>0.909</td>
</tr>
<tr>
<td>9.0</td>
<td>0.995</td>
<td>0.789</td>
<td>0.977</td>
<td>0.977</td>
<td>0.965</td>
<td>0.908</td>
</tr>
<tr>
<td>10.1</td>
<td>0.996</td>
<td>0.811</td>
<td>0.980</td>
<td>0.981</td>
<td>0.969</td>
<td>0.910</td>
</tr>
<tr>
<td>11.4</td>
<td>0.998</td>
<td>0.833</td>
<td>0.985</td>
<td>0.986</td>
<td>0.973</td>
<td>0.920</td>
</tr>
</tbody>
</table>

Tabla 2: Idem tabla 1 para chips.

REFERENCIAS