Hidrófono tipo aguja de gran ancho de banda, alta sensibilidad y bajo costo
M. Barbaglia*

Instituto Balseiro, Centro Atómico Bariloche, Av. Bustillo 9500, S. C. de Bariloche, CP8400, Rio Negro, Argentina
e-mail: barbagli@exa.unicen.edu.ar

Se presenta en éste trabajo el diseño y construcción de un hidrófono tipo aguja de gran ancho de banda, alta sensibilidad y bajo costo. Se muestra la respuesta obtenida por el detector a un pulso de presión de algunos ns de duración generado dentro de una cavidad cerrada. Se estima un costo total inferior a los u$20 por lo tanto es bien situado en el ámbito educativo.

In this paper the design and construction of a needle hydrophone with extended band with, high sensibility and low cost is presented. The response to a pressure pulse of same ns of duration into a closed cavity is showed. A total cost smaller than u$20 was estimated then is well situated into the educational area.

I. INTRODUCCIÓN

Los hidrófonos tipo aguja son indicados cuando se necesita medir el ultrasonido en una pequeña cavidad cerrada la cual no permitiría detectores de gran tamaño que puedan ocasionar distorsiones ó que directamente no entren en la cavidad(1)(2). Este tipo de detector generalmente usa como sensor, un polímero de la familia del polyvinylidenedifluoride (PVDF) dado su relativamente buen apaireamiento con la impedancia acústica del agua y su buena flexibilidad mecánica. Típicamente son de forma cilíndrica con radios del orden del milímetro y de unos cm de altura.(3)(4)

Medir el ultrasonido en una cavidad envuelve varios problemas técnicos como es la relación del tamaño del sensor a la sensibilidad, el ancho de banda, el método de posicionamiento del instrumento, la resistencia a la corrosión, etc. Los experimentos de cavitación y particularmente los de sonoluminiscencia, de multi-sonoluminiscencia y los de cavitación de una burbuja producida por un pulso láser, entran dentro de los experimentos en donde los anteriores requerimientos deben cumplirse(5).

Con las condiciones adecuadas, una burbuja puede convertir energía ultrasónica en luz. A éste fenómeno se lo llama sonoluminiscencia y consiste básicamente en una burbuja que levita en un líquido expandiéndose y colapsando ciclicamente al ritmo de la presión acústica suministrada. En cada colapso de la burbuja se genera un pulso luminico con duración de 50ps(5). Luego de emitido el pulso luminico, la burbuja se re-expande emitiendo un pulso de presión. En el experimento de Wang et al.(6) se colocó un hidrófono óptico a 2,5mm de la burbuja y se observaron pulso de presión de entre 5 y 30ns de duración (dependiendo de la presión de ultrasonido aplicada y de la concentración de gases en el agua) con una amplitud entre 1 y 3 bar lo cual indica que en la interfaz se generan presiones de entre 40 y 60 Kbar. Por lo anterior, un sistema sonoluminisciente es una eficiente fuente de pulsos periódicos de ultrasonidos, temporalmente muy cortos, de gran amplitud y de bajo costo.

El costo estimado de éste detector es inferior a u$20 que es comparativamente despreciable comparado con hidrófonos comerciales de similares características.

Figura 1. Diagrama en corte del hidrófono descrito. a) cuerpo de la sonda, b) cubierta de pintura conductora, c) conductor de señal, d) Epoxy, e)metal que soporta al elemento sensor, f) polímero sensor, g) soldadura (gota de estado)

II. DESCRIPCIÓN DEL DISPOSITIVO

La figura 1 muestra el hidrófono aguja en corte. El elemento sensor es una porción de un polímero de la familia del PVDF, material que por sus características es óptimo para éste tipo de aplicaciones. Particularmente, el elemento sensor se seccionó (con un bisturí) de un altavoz del tipo usado en los teléfonos celulares (marca Motorola, modelo StarTac). En estos altavoces, una cara del polímero está depositada sobre

* Actualmente en:
Pinto 399, UNICEN, Laboratorio. PLADEMA, Tandil, CP7000, Buenos Aires, Argentina

105- ANALES AFA Vol. 16 BAHIA BLANCA 2004 - 105
una lámina de metal y la otra cara tiene un recubrimiento conductor.

En la figura se observa que a una cara del elemento sensor (e) se le suelda (g) un fino cable de cobre recubierto por un aislante (c), el cual, será el vóz de la señal. La otra cara del sensor (f) está cubierta por una delgada capa de pintura conductora (b). La sensibilidad del hidrófono queda acotada por el grosor de la capa de pintura dado que una capa delgada permite un mejor acoplamiento mecánico resultando en una mayor sensibilidad.\(^{(7)}\)

Los extremos del elemento sensor se aislaron eléctricamente con material Epoxy (d). El Epoxy sirve también para dar rigidez mecánica a la unión del sensor con el cuerpo de la sonda (a) y para que el sensor no detecte ondas por detrás de la cara frontal (se usó como “backing”). El cuerpo de la sonda está constituido por un tubo cilíndrico de acero inoxidable de 1,2 mm de diámetro exterior y 120 mm de altura. La salida del hidrófono es un conector BNC solidario a un cable coaxial tipo RG174/U.

En la figura 2 se observa una fotografía de uno de los hidrófonos construidos.

![Figura 2. Fotografía del hidrófono construido](image)

Se midieron las siguientes características:
Diámetro activo del sensor = 1 mm
Espesor total del
sensor (lámina de metal +
material sensor +
pintura conductora) = 110 μm (Espesor del
material sensor = 56 μm)
Impedancia = 482 pF

III. RESULTADOS

La caracterización del hidrófono se realizó con
un sistema sonoluminiscente al cual se le aplicó una
excitación senoidal de 29011Hz con una presión
cústica de 1,3bar aproximadamente para levantar a la
burbuja. Con estos valores se mantuvo en forma estable
una burbuja de aire en estado sonoluminiscente
(emitiendo luz) durante todo el experimento.\(^{(7),(8)}\)

Una cavidad esférica de Pirex de 6cm de
diámetro exterior (DE) con un cuello de 5mm de DE
llena con agua destilada, filtrada a temperatura ambiente
se usó para contener la burbuja. Un par de transductores
piezoelectrónicos cilíndricos fueron pegados en el ecuador
de la cavidad y se encargaron de traducir la energía
electrónica suministrada para levantar la burbuja en energía
cústica. Como segundo sensor se colocó un microfono
piezoelectrónico estándar en el exterior de la cavidad.

En la figura 3 se observa el esquema del
sistema usado. El hidrófono fue sostenido a la altura
deseada por un posicionador tridimensional.

En la figura 4 se observa en la gráfica superior
la señal registrada con el microfóno y en la gráfica
inferior la correspondiente al hidrófono colocado a 5mm
de la burbuja. En la gráfica superior se distingue una
señal fundamental correspondiente a la potencia
cústica suministrada (29011Hz) a la cual se le
superpone una modulación de amplitud que corresponde
al ultrasonido generado por la burbuja y que indica que
se encuentra en estado sonoluminiscente. El ancho de
banda y la sensibilidad del sensor no permiten observar
los pulsos de presión que se generan luego de que la
burbuja colapsa.

En la gráfica inferior, se distinguen pulsos de
gran presión y corta duración (FWHM = 90ns) que se
generan inmediatamente luego del colapso de la burbuja
(se los indicó con un *). No se observa la señal
proveniente de la potencia acústica suministrada para
levantar a la burbuja.

Para determinar la correlación entre el pulso de
presión y el colapso de la burbuja se estimó el tiempo
que tarda el pulso de presión en recorrer 5mm (distancia
entre la burbuja y el hidrófono), asumiendo que el
centro del colapso coincide con el momento en que
aparece el pulso sonoluminiscente. Este último fue
registrado con un fotomultiplicador tipo Dantec X-57.
RECONOCIMIENTOS

Este experimento se llevó a cabo en las instalaciones del Laboratorio de Cavitación y Biotecnología del Instituto Balseiro dirigido por el Dr. F. Bonetto al cual se le reconoce la colaboración prestada. Fue subvencionado parcialmente por el FOMEC, la Fundación Balseiro, el PICT 2000 12-09848 y por el laboratorio PLADEMA. Para desarrollar éste trabajo el autor tuvo el financiamiento del CONICET. Por sus aportes a éste trabajo el autor agradece al profesor A. Clausse.

Referencias

7- Se obtuvieron muy buenos resultados al hacer mediciones en líquidos clorados reemplazando la pintura conductora por una electrodepositación de cobre.

Referencias

7- Se obtuvieron muy buenos resultados al hacer mediciones en líquidos clorados reemplazando la pintura conductora por una electrodepositación de cobre.

Figura 4. Medición realizada con el hidrófono a 5mm de distancia de una burbuja sonoluminiscente.

Otro método de verificación de la correspondencia entre los pulsos de presión y el colapso de la burbuja fue comprobar que si se variaba la presión acústica aplicada a la burbuja (lo cual se transforma en una variación en la fuerza del colapso y por ende una variación en la intensidad lumínica) la amplitud del pulso de presión medido debería variar. Efectivamente, se midió que a menor intensidad sonoluminiscente menor fue la amplitud del pulso de presión registrado por el hidrófono y viceversa.

IV. CONCLUSIONES

Se ha diseñado y construido un hidrófono de gran ancho de banda, sensible, poco intrusivo y de bajo costo. Este hidrófono es muy adecuado para experimentos en donde se requiera mínima interferencia con el sistema observado. Su bajo costo y su fácil construcción permiten su uso en experimentos auto-destructivos. El sensor fue capaz de colectar eficazmente el pulso de ultrasonido generado en un sistema sonoluminiscente pudiendo identificar el pulso de presión que se genera luego de que colapsa la burbuja. El costo del detector es despreciable frente a uno comercial de similares características.