Caracterización de la interfaz metal-óxido/óxido-metal de Ti/TiO₂

S.M. Mendoza, L.I. Vergara*, M.C.G. Passeggi (h), J. Ferrón.

Grupo de Fisica de Superficies, INTEC (Conicet-Universidad Nacional del Litoral)
Güemes 3450-(3300) Santa Fe-Argentina
e-mail: lv vergara@intecl.unl.edu.ar

En este trabajo se analizan los procesos redox del titanio en las interfaces Cu/óxido de Ti y óxido de Ti/Ti, mediante la espectroscopía de electrones Auger y el método de análisis de factores. Las interacciones entre el substrato metálico y el Ti limitan la difusión de oxígeno, promoviendo la formación de TiO. El calentamiento de la interfaz en atmósfera de oxígeno rompe la pasivación del Ti, favoreciendo los procesos de oxidación, pero la película no alcanza a oxidarse en forma completa. Por otra parte, la fuerte reactividad del Ti ensancha la interfaz óxido de Ti/Ti, con la formación de Ti₃O₅. Tanto en la oxidación del metal como en la reducción del óxido, las reacciones químicas se detienen por limitaciones en la difusión, pero sólo después de una importante degradación de las interfaces.

We have characterized, through Auger electron spectroscopy and factor analysis, the Cu/Ti oxide and Ti oxide/Ti interfaces. The Cu substrate/Ti interactions limit the oxygen diffusion promoting the appearance of TiO. Heating the interface in an oxygen atmosphere breaks the Ti passivation enhancing the oxidation process, but the complete thin film oxidation cannot be achieved. In the Ti oxide/Ti case, the strong Ti reactivity broadens the interface with the appearance of Ti₃O₅. In the metal oxidation, as well as in the oxide reduction, the chemical reaction is stopped by diffusion limitations, but only after an important degradation of the interface sharpness.

Introducción

Las películas metálicas ultrafinas en contacto con óxidos, así como las películas de óxidos sobre metales, encuentran amplias aplicaciones tecnológicas en áreas tales como catálisis, microelectrónica, medicina, construcción aeroespacial, etc.¹-⁴ Como la mayoría de las propiedades de estos sistemas dependen de fenómenos que ocurren en la interfaz, es clave comprender los mecanismos que los gobiernan.

Entre las estructuras más interesantes y utilizadas están aquellas que involucran Ti. En un trabajo reciente, estudiando los procesos de oxidación de Ti, se encontró que el régimen de oxidación depende fuertemente del espesor de las películas.⁵ Se determinó que en películas con menos de 2 MC de espesor, así como también en las más gruesas y Ti volumen, sólo se forma TiO₂. Sin embargo, en películas de espesor intermedio aparece también un estado de oxidación menor (TiO₃ con x < 2). Recientemente también se demostró que un posterior calentamiento en atmósfera de oxígeno favorece los procesos de oxidación, pero no es posible lograr la completa oxidación de las películas.⁶

Metodología empleada

1.- Esquema Experimental

Los experimentos se llevaron a cabo en una cámara de ultra alto vacío (UHV) equipada con AES, con una presión base en el rango de 10⁻¹⁰ Torr. Los espectros Auger fueron adquiridos usando un analizador cilíndrico con una resolución de 0,6 % y una modulación pico a pico de 4 V. La energía del haz de electrones primarios fue de 3 keV y la densidad de corriente de 4 mA/cm². El substrato utilizado fue un monocristal de Cu(100) de alta pureza, limpiado mediante ciclos de bombardeo iónico (Ar⁺ a 0.7 keV) y recocado a 850 K. La deposición de Ti se realizó mediante el calentamiento por bombardeo electrónico de una barra de Ti policristalino. El nivel de C se mantuvo por debajo del límite de detección de AES a lo largo de todos los experimentos. La oxidación se realizó con O₂ de alta pureza (99,997%) en dos etapas: a temperatura ambiente hasta la saturación y luego, a 600 K hasta una nueva saturación. El resto de las experiencias se realizaron a temperatura ambiente.

2.- Tratamiento de datos

El método de FA,⁷ que involucra los métodos de análisis de componentes principales (PCA) y transformación hacia un blanco (TT), ha sido utilizado y discutido en trabajos previos.⁸-¹³ Consiste en la descomposición de la matriz de datos D (formada por los espectros experimentales) en dos matrices, una formada por los espectros Auger correspondientes a las componentes puras y la otra por sus pesos relativos en cada espectro experimental. Para determinar el número de componentes puras, se aplica el PCA en su forma secuencial. Para ello se fija un número N de componentes puras y se sigue la evolución del error cometido al

* Autor a quién debe dirigirse la correspondencia.

162 - ANALES AFA Vol. 13

ROSAARIO 2001-162
reproducir la matriz de datos a medida que se le van agregando espectros. Cada vez que el error, con N componentes fijas, supera al error experimental, surge la necesidad de agregar una nueva componente al sistema. De aquí en adelante el sistema se caracteriza por $N+1$ componentes puras. Empleando la TT se puede obtener la forma de estas componentes puras y sus pesos relativos en cada espectro experimental. Para ello es indispensable conocer la concentración de N componentes al menos en $N-1$ puntos del perfil, siendo N el número de componentes puras.

Resultados y discusión

En este trabajo se realizan diferentes experiencias que involucran películas delgadas de Ti y sus óxidos. En primer lugar se analiza el crecimiento de una película de Ti sobre un substrato de Cu(100). En segundo lugar se estudia la oxidación de la película. Esta etapa se divide en dos partes: la oxidación a temperatura ambiente (TA) hasta alcanzar la saturación, y el calentamiento a $600 \, \text{K}$ en atmósfera de oxígeno (período que de aquí en más se denomina post-oxidación) hasta un nuevo régimen de saturación. Finalmente, el tercer paso corresponde al crecimiento de una película de Ti sobre TiO$_2$.

El conocimiento de la velocidad de evaporación es el único modo de determinar el recubrimiento real de Ti. Por ello, la calibración del evaporador se realiza antes y después de cada medición. De esta figura se concluye que la velocidad de evaporación es aproximadamente 0,25 MC/min., para las condiciones utilizadas.

En la Fig. 2 se muestra la evolución de la forma de línea Auger para las transiciones Ti$_{LM\alpha}$, Ti$_{LM\beta}$ y O$_{KL\alpha}$ en las tres experiencias llevadas a cabo. La primera columna (Fig. 2a) corresponde al crecimiento de la película de Ti sobre el substrato de Cu(100). Aquí se puede ver, como ya es conocido, una transferencia parcial de electrones de Ti a Cu. Esta transferencia depende del espesor de la película, y para las más gruesas se recupera la forma de línea Auger típica del Ti. En la segunda columna (Fig. 2b) se muestra la evolución de los espectros para la etapa de oxidación. El proceso de oxidación se observa claramente: el rápido crecimiento de la señal de O está acompañado por la evolución de la transición Auger del Ti, que muestra los cambios en la banda de valencia del mismo y la aparición de la transición interatómica Ti-O a $\sim 407 \, \text{eV}$. La línea horizontal punteada representa el inicio de la etapa de post-oxidación. El calentamiento de la muestra produce una nueva oxidación hasta una nueva saturación. Finalmente, en la tercera columna (Fig. 2c) se muestran los espectros correspondientes a la etapa de crecimiento de Ti sobre el óxido, para cantidades vaporadas comparables con el caso (a). La simple observación de los espectros pone de manifiesto que existe una fuerte interacción entre el Ti y el óxido. En la Fig. 3 se estudian estos resultados de un modo más cuantitativo, analizando la evolución de las amplitudes pico a pico (Figs. 3a, 3c y 3e) y el cociente entre las transiciones Ti$_{LM\beta}$ y Ti$_{LM\alpha}$ llamado Ti$_{VM}$ (Figs. 3b, 3d, y 3f). Como sólo la transición Ti$_{LM\alpha}$ involucra electrones de valencia, Ti$_{VM}$ se utiliza frecuentemente como un indicador de los estados de oxidación del Ti.

Figura 1: Intensidades de las señales Auger Cu$_{MN\alpha}$ (a), O$_{KL\alpha}$ (†) y Ti$_{LM\beta}$ (b) en función del tiempo de evaporación de Ti. Las líneas rectas son ajustes por mínimos cuadrados de los datos experimentales.

En la Fig. 1 se muestran las intensidades Auger correspondientes a las transiciones Cu$_{MN\alpha}$ (60 eV) y Ti$_{LM\beta}$ (418 eV) en función del tiempo de evaporación de Ti, durante el crecimiento de la película. Se grafica también la señal O$_{KL\alpha}$ para mostrar el bajo nivel de contaminación a lo largo del proceso. Los cambios de pendiente en las evoluciones de Cu y Ti corresponden a la complejidad de sucesivas monocapas. Las rectas son ajustes por mínimos cuadrados de los datos experimentales. Este resultado pone de manifiesto un régimen de crecimiento capa a capa de Ti sobre Cu(100), en concordancia con reportes previos. Este tipo de gráficas se utilizan a lo largo de este trabajo como curvas de calibrado para determinar el espesor de las películas de Ti. La calibración se repite periódicamente para controlar posibles cambios en la velocidad de evaporación. Este procedimiento es clave cuando se crece Ti sobre un óxido.

Figura 2: Evolución de espectros para las transiciones Ti$_{LM\alpha}$, Ti$_{LM\beta}$ y O$_{KL\alpha}$: (a) crecimiento de Ti sobre Cu(100); (b) oxidación de la película de Ti (la línea de puntos indica el comienzo de la etapa de post-oxidación); y (c) crecimiento de Ti sobre TiO$_2$.

Los resultados correspondientes a la evaporación de Ti sobre Cu (Figs. 3a y 3b) revelan que para bajos recubrimientos existe una interacción Cu/Ti en la interfaz.
Por debajo de 2 MC, la relación TiVM muestra una interfaz reactiva. El valor inicial de TiVM (~1,0) marca la transferencia de electrones de la banda de valencia de Ti a Cu. Se puede asumir que para recubrimiento mayores a 2 MC, el Ti se encuentra en su forma metálica (TiVM ~ 1,3). En la Fig. 3c se observan las dos etapas conocidas para la señal O$_{KLL}$ durante el proceso de oxidación, el rápido aumento, seguido por una disminución del coeficiente de pegado y la saturación. Dado que, a temperatura ambiente el sistema se pasiva antes de que el Ti reaccione completamente, se procede al calentamiento de la muestra en atmósfera de oxígeno (a partir de la línea vertical punteada). Esta operación aumenta la reactividad del Ti e incrementa la difusión del O, favoreciendo la oxidación hasta llegar a un nuevo estado de saturación. La relación TiVM muestra (Fig. 3d), al final, un estado de oxidación mayor que el alcanzado en la saturación a temperatura ambiente. Su valor menor a 0,5 indicaría que el Ti se encuentra bajo la forma TiO$_2$.

Finalmente, en las Figs. 3e y 3f se observan las evoluciones de las alturas pico a pico y la relación TiVM durante el crecimiento de la película de Ti sobre el óxido. La evolución de TiVM muestra una transformación gradual de TiO$_2$ a Ti metálico, pero no es suficiente para determinar si existe una mezcla de TiO$_2$ y Ti$^+$ y/o si se encuentran otros óxidos de Ti. Comparando la velocidad de crecimiento de la relación TiVM para la deposición de Ti sobre el substrato metálico (Fig. 3b) y sobre el substrato oxidado (Fig. 3f) se observa la diferente reactividad de las interfaces.

Para reproducir todos los datos en ambos experimentos. Como los factores no aparecen simultáneamente se puede aplicar TT en forma secual. Además, se sabe que el primer espectro de la etapa de oxidación y el último del proceso de evaporación, corresponden a Ti6. Se debe notar que el análisis secual para el crecimiento de la película metálica sobre el óxido se efectúa en forma inversa, es decir, se comienza por el estado final, donde se puede asegurar la existencia de un único factor, Ti6.

![Figura 4: Evolución del error al aplicar FA en su forma secual y con uno (a), dos (b) y tres factores (c); (a) oxidación de la película de Ti, en función de la exposición a oxígeno (la línea de puntos marca el inicio de la post-oxidación); (b) evaporación de Ti sobre el óxido, en función del recubrimiento.](image)

![Figura 5: Bases obtenidas a partir de la TT para las mismas experiencias mostradas en la Fig. 4: (a)oxidación de la película de Ti; y (b) evaporación de Ti sobre la película oxidada. Panel derecho: espectros patrones de Ti, TiO, Ti$_2$O$_3$ y TiO$_2$.](image)
pelicula está constituida por una mezcla de TiO₂ y Ti₃O₄, y pasiva la superficie. El calentamiento de la muestra en atmósfera de oxígeno rompe el efecto pasivante y favorece el proceso hasta un nuevo estado de saturación, pero sin lograr la completa oxidación del Ti. La Fig. 6b muestra que el crecimiento de Ti sobre la película oxidada está caracterizado por la rápida desaparición de TiO₂ y la aparición simultánea de Ti₃O₄ y Ti. La aparición de Ti₃O₄ sugiere la reducción química de Ti⁴⁺ debido a Ti⁰. Esta idea se ve apoyada por comparación de la evolución experimental de TiO₂ con la correspondiente a la atenuación en ausencia de reacción (es decir, atenuación solo por recubrimiento). De hecho, en la Fig. 6b se observa que el peso de Ti⁴⁺ decrece mucho más rápidamente que en el caso de una atenuación pura (línea continua). Por otro lado, la evolución experimental de Ti₃O₄ corresponde a una atenuación pura (línea de puntos), sugiriendo una interfacial Ti₃O₄/Ti sin reacción. Estos resultados permiten entender, en forma completa, el crecimiento de Ti sobre TiO₂. Mientras que Ti reacciona completamente con TiO₂ para formar Ti₃O₄, la interfaz Ti/Ti₃O₄ es no-reactiva. Una vez que la primer monocapa de Ti ha reaccionado con TiO₂ formando Ti₃O₄, se crea una capa de separación sub-superficial entre Ti y TiO₂. La reacción química se detiene, no aparecen estados de oxidación menores (TiO₂ con x ≤ 1), y la evolución de los pesos corresponde a una atenuación pura.

Figura 6: Evolución de los pesos de las bases en los espectros experimentales para los procesos analizados en la Fig. 4. (a) Oxidación y post-oxidación. La línea vertical punteada separa las dos etapas. El eje "Exposición" está en escala logarítmica, y a partir de la post-oxidación se reinicia para visualizar mejor los cambios. (b) Evaporación de Ti sobre el óxido. () Ti, () Ti₃O₄, () TiO₂, y () TiO₂. () curva teórica para la atenuación de TiO₂ en ausencia de reacción, () curva teórica para la atenuación de Ti₃O₄ en ausencia de reacción.

Aunque los conceptos termodinámicos no siempre son válidos para reacciones de no-equilibrio, como las presentes, las reacciones observadas en estos casos son justamente las que se esperarían de acuerdo con estos conceptos. Esto es, la reacción: Ti + 3 TiO₂ → 2 Ti₃O₄ (ΔG = -48 kcal/mol) se ve favorecida frente a la otra posible: Ti + TiO₂ → 2 TiO₂ (ΔG = -21.5 kcal/mol). Finalmente, la termodinámica dice que la reacción Ti + Ti₂O₃ → 2TiO no es probable (ΔG ~ 0 kcal/mol), en acuerdo con su ausencia a lo largo de los experimentos.

Conclusions

Mediante AES y FA se caracterizaron los procesos de oxidación y reducción de Ti bajo diferentes regímenes de película delgada. Se encontró que los efectos de pasivación a lo largo de los procesos tienen orígenes diferentes: i) La formación de TiO₂ no permite la subsecuente oxidación de la película de Ti, pero la reacción química puede ser reactiva, y el régimen de saturación modificado por aumento de la temperatura. ii) La presencia del substrato metálico inhibe la completa oxidación de la película, es decir, sin importar cuánto sea la exposición a oxígeno, o la temperatura del substrato, TiO₂ está siempre presente en la interfaz para películas más gruesas que 2 MC. iii) TiO₂ estabiliza la interfaz (TiO₂/Ti₂O₃/Ti) impidiendo una mayor reducción del óxido. Las interacciones metal-metal y óxido-metal no permiten la obtención de interfaces abruptas y bien definidas.

Referencias
20- Handbook of Chemistry and Physics. (CRC Press, Inc.
 Edición N° 69. 1988).