CRITERIO DE CONGELAMIENTO DE HANSEN-VERLET EN SUPERCONDUCTORES DE ALTA TEMPERATURA CRÍTICA

P. S. Cornaglia*, C. A. Balseiro
Instituto Balseiro, Centro atómico Bariloche
Universidad Nacional de Cuyo
(8400)S. C. de Bariloche, Río Negro, Argentina.
*cornaglia@cab.cnea.edu.ar

En este trabajo utilizamos teorías de líquidos clásicos para obtener el factor de estructura en la fase líquida de vórtices en superconductores de alta-\(T_c\) a diferentes campos y temperaturas. Utilizando estos resultados determinamos la línea de congelamiento fusión, por medio de una teoría de funcional densidad. Los resultados de este estudio muestran que el criterio de congelamiento de Hansen-Verlet y el criterio de fusión de Lindemann son válidos dentro de un \(\sim 10\%\), que es un margen de error típico para este tipo de criterios.

In this work we have used theories developed for classical liquids to obtain the structure factor of the vortex liquid phase in high-\(T_c\) superconductors. Using these results, we determined the melting line in the H-T phase diagram, by means of a density functional theory.
The results shows that the Hansen-Verlet freezing criteria as well as the Lindeman melting criteria are valid within \(\sim 10\%\) which is a typical error for these type of phenomenological criteria.

I INTRODUCCIÓN

Cuando una muestra de superconductor de tipo-II es enfriada por debajo de su temperatura de transición superconductora de campo medio \(T_c(H)\) en un campo magnético \(H (H > H_{c1} \sim 10^{-2}\text{tesla})\), el campo penetra en la muestra en la forma de líneas de flujo o vórtices. Cada vórtice consiste exactamente de un cuanto de flujo \((\phi_0 = \hbar c/2e)\) rodeado por corrientes no dissipativas (superconstituidas) en el plano perpendicular a la dirección del campo. El comportamiento de los vórtices domina muchas de las propiedades físicas de los superconductores de alta \(T_c\) hasta un campo crítico \(H_{c2} \sim 10^2\text{tesla}\), por encima del cual el material pasa al estado normal. Los vórtices interactúan repulsivamente entre sí y a temperaturas bajas forman un sólido. Es actualmente aceptado que, en muestras limpias la red de vórtices se funde en una transición de primer orden. Esto fué observado, en primer lugar, por Hugo Safar et al., en experimentos de transporte en \(YBa_2Cu_3O_7\) (YBCO) como una serie de saldos reproducibles en la resistividad acompañados por histéresis en la dependencia con la temperatura [1]. La confirmación termodinámica se obtuvo mediante precisas mediciones del salto en la inducción magnética en \(Bi_2Sr_2CaCu_2O_8\) (BSCCO) [2] y del salto en la entropía en YBCO, en la transición. En algunos compuestos se observa una impactante regularidad en las propiedades de transporte: para diferentes valores del campo magnético aplicado, que es proporcional a la densidad de vórtices, la resistividad en el plano \(\rho_{ab}(T)\) decrece con la temperatura y salta a cero, esencialmente de manera discontinua, a la temperatura de fusión \(T_f\) con \(\rho_{ab}(T_f)\) independiente del campo. Este efecto ha sido recientemente explicado [3] en base al criterio de congelamiento de Hansen-Verlet. En el presente trabajo investigamos la validez de dicho criterio para el líquido de vórtices. Hansen y Verle en 1969 [4] observaron mediante simulaciones, que el líquido de Lennard-Jones, se congela cuando el primer máximo en el factor de estructura \(S(q)\) tiene una amplitud aproximada de 2.85. Las curvas de factor de estructura \(S(q)\) de los líquidos cerca de la línea de congelamiento son similares. Las mayores diferencias se dan a valores pequeños y grandes de \(q\). Las curvas \(S(q_{max})\), son casi idénticas para valores intermedios de \(q\). Resultados computacionales para el líquido de Lennard-Jones, OCP (plasma de un componente) y esferas a lo largo de la línea de congelamiento y de experimentos para Ar, Na, Rb y Pb, muestran que \(S(q_{max})\) está entre 2.8 y 3.1. Este criterio muestra que el sistema se congela cuando el “orden” medido con el primer máximo de \(S(q)\) supera un valor cuasi-universal. Entendiendo por cuasi-universal que dicha cantidad no es exactamente constante pero cercana a un número fijo dentro de un \(\approx 10\%\). El criterio de Hansen-Verlet es la contraparte del criterio de fusión de Lindemann [5], que ha sido corroborado para el caso de la transición sólido-líquido de la red de vórtices [6]. En este último caso, utilizando un valor para el coeficiente de Lindemann, mayor al observado en otros sistemas: \(u_L \sim 0.3\).
II MÉTODO

Estudiamos la fusión de la red de vórtices, siguiendo el trabajo de Sengupta et al.\cite{6} para obtener la línea de congelamiento-fusión. Se utilizó la teoría de funcional densidad que ha sido aplicada con éxito para estudiar la transición sólido-líquido en una gran variedad de sistemas\cite{7}.

En el límite de acoplamiento Josephson nulo, para $H||c$, el sistema corresponde a un sistema clásico de vórtices puntuales restringidos a moverse en los planos superconductores (ab), interactuando a través de un potencial de pares anisotrópico\cite{8} cuya transformada de Fourier es:

$$\beta V(k) = \frac{\Gamma \lambda^2 \left[k_0^2 + (4/d^2) \sin^2(k_z d/2)\right]}{k_0^2 \left[1 + \lambda^2 k_0^2 + 4(\lambda^2/d^2) \sin^2(k_z d/2)\right]},$$ \hspace{1cm} (1)

donde $\Gamma = \beta \delta \Phi_0^2/4\pi \lambda^2$ es un parámetro adimensional que da la intensidad de la interacción, $\beta = (k_B T)^{-1}$, λ es la longitud de penetración, d es la distancia entre planos y k_z (k_0) es la componente del vector de onda perpendicular (paralela) a los planos. Los vórtices en el mismo plano interactúan repulsivamente mediante un potencial logarítmico, mientras que los vórtices separados por un plano o más interactúan en forma atractiva, esta última más débil en un factor $d/\lambda \sim 0.01$. A distancias grandes se cumple:

$$V(\rho, n = 0) \sim -\frac{\Gamma}{2\pi} \ln \left(\frac{\rho}{L}\right),$$ \hspace{1cm} (2)

$$V(\rho, n \neq 0) \sim -\frac{d}{\lambda} \exp(-nd/\lambda) \times V(\rho, n = 0).$$ \hspace{1cm} (3)

donde n es el número de planos de separación La interacción repulsiva favorece la formación de un cristal y la atrae la formación de líneas.

Calculamos las funciones de correlación de dos cuerpos, entre ellas el factor de estructura utilizando teorías de líquidos clásicos. En la aproximación de cadena hiper-enredada (HNC), adaptada a nuestro sistema compuesto por planos, las ecuaciones integrales, de dicha teoría, pueden ser resueltas teniendo en cuenta que las correlaciones entre planos son mucho menores a las correlaciones intra planos. Esto último se debe a la intensidad de las interacciones fuera del plano son mucho menores que dentro del plano. A primer orden se reemplazaron las funciones de correlación fuera del plano por sus límites asintóticos, que son conocidos. Se comprobó que esta aproximación es excelente, para los valores de B (inducción magnética) y T en la fase líquida. En el presente trabajo se utilizaron los valores de λ y d aceptados para el BSCCO, 1500\AA y 15\AA respectivamente. Asimismo, se consideró a λ constante, lo que es una buena aproximación para las temperaturas utilizadas si $T_c \approx 90K$.

Finalmente, utilizamos las funciones de correlación como dato para una teoría de funcional densidad de congelamiento. En esta teoría, el costo en energía libre, con respecto a un líquido uniforme de densidad

$$\rho_t,$$ de generar una densidad promedio inhomogénea, se puede expresar como funcional de la densidad $\rho(r)$ en la aproximación de Ramakrishnan y Yussouff\cite{7}, de la siguiente manera:

$${\Delta \Omega \over k_B T} = \int d^3r \left[\rho(r) \ln \left(\rho(r) \rho_t \right) - \rho(r) + \rho_t \right]$$

$$- \frac{1}{2} \int d^3r \int d^3r' \left(1 - r - |r'|\right) \delta \rho(r) \delta \rho(r'),$$ \hspace{1cm} (4)

donde $\delta \rho(r) = \rho(r) - \rho_t$, $c(|r' - r|)$ es la función de correlación directa del líquido y se ha tomado $c(r, r') = c(|r' - r|)$ debido a la homogeneidad del mismo. En campo medio, configuraciones que representan una fase de equilibrio satisfacen:

$$\delta \Delta \Omega(T, \mu, [\rho]) / \delta \rho|_{\rho = \rho(r)} = 0.$$ \hspace{1cm} (5)

y se obtiene la siguiente ecuación de auto-consistencia:

$$\ln \left(\rho(r) \rho_t \right) = \int d^3r' c(|r' - r|) \left(\rho(r') - \rho_t \right).$$ \hspace{1cm} (6)

Una densidad uniforme $\rho(r') = \rho_t$ es siempre solución de esta ecuación. Pero pueden aparecer abruptamente soluciones no homogéneas al aumentar las correlaciones. El líquido se congelará cuando la diferencia de energía libre dada por la Ec. (4) es cero. El problema entonces se reduce a encontrar las soluciones de la Ec. (6), para las cuales la diferencia de energía libre es nula.

En este punto es conveniente expandir la densidad en un conjunto de vectores de la red recíproca,

$$\rho(r)/\rho_t = 1 + \eta + \sum_G \rho_G e^{iG\cdot r},$$ \hspace{1cm} (7)

Figura 1: Factor de estructura calculado en la aproximación HNC. Se puede observar como aumenta la amplitud del primer pico ($S(q_{\text{max}})$) al disminuir la temperatura.

La PLATA 1998 - 239
Figura 2: Línea de coexistencia sólido-líquido para el BSCCO obtenida mediante la teoría de funcional densidad y la medida por Zeldov et al. [2]. En las mediciones experimentales aparece un punto crítico, cuya existencia se debe a la presencia de defectos puntuales, que no fueron considerados en la teoría.

la única restricción que se le impone de esta manera es que debe tener las simetrías de la red de Bravais a la cual son recíprocos los vectores \(\{ \mathbf{G} \} \). En esta ecuación \(\eta \) es el cambio relativo de densidad media al pasar de líquido a sólido, los \(\{ \rho_G \} \) son las componentes de Fourier de la densidad y junto con \(\eta \) pueden ser vistos como parámetros variacionales en esta teoría. Reemplazando la Ec. (7) en la Ec. (6) se obtiene la ecuación autoconsistente en el espacio de Fourier:

\[
1 + \eta + \sum_{\mathbf{G} \neq 0} \rho_G e^{i\mathbf{G} \cdot \mathbf{r}} = \exp(\rho_G c_0 \eta + \sum_{\mathbf{G} \neq 0} \rho_G \rho_G c_0 e^{i\mathbf{G} \cdot \mathbf{r}}).
\]

Esta ecuación se puede resolver para los \(\rho_G \), truncando la serie de la exponencial, lo que está justificado por el hecho de que los \(c_0 \) decenan rápidamente con el módulo de \(\mathbf{G} \).

El diagrama de fases obtenido en este esquema se muestra en la Fig. 2, junto con los datos experimentales de Zeldov et al. Sobre la línea de coexistencia calculamos diferentes propiedades como son: la amplitud máxima del factor de estructura del líquido (parámetro de Hansen y Verlet [4]) y el parámetro de Lindemann [8] \(u_L = \sqrt{<u^2> / a_0^2} \) donde \(<u^2> \) es el desplazamiento cuadrático medio de las partículas y \(a_0 \) es el parámetro de red) (ver Fig. 3). Asimismo calculamos el salto de entropía utilizando la ecuación:

\[
S = -\Delta \Omega
\]

y el salto en la magnetización en la transición (ver Fig. 4) por medio de la ecuación de Clausius Clapeyron:

\[
\Delta s = \frac{d\phi_0}{4\pi} \frac{\Delta B}{B_m} \frac{dH_m}{dT}
\]

Figura 3: Parámetro de Lindemann y amplitud máxima del factor de estructura del líquido en la línea de coexistencia. Se observa que ambos son aproximadamente constantes (~ 10%) para temperaturas mayores a ~ 40 K región en la cual se observa experimentalmente una transición de primer orden.

Figura 4: Salto en la magnetización, en la transición de congelamiento, relativo al campo \(B_m \), en función de la temperatura. Se presentan los datos experimentales (puntos llenos) de Zeldov et al.[2] para el BSCCO y los resultados obtenidos con la teoría de funcional densidad. Los valores teóricos se obtuvieron utilizando la ecuación de Clausius Clapeyron.
III CONCLUSIONES

El criterio de congelamiento de Hansen y Verlet (al igual que el de Lindemann) es válido para los superconductores de alta temperatura crítica de alta anisotropía. El valor predicho en este trabajo para la amplitud del máximo del factor de estructura (∼ 6.5), es mayor que el observado para sistemas isotrópicos tridimensionales (∼ 2.85). Esto se debe al carácter cuasibidimensional de estos materiales. Las mediciones experimentales del factor de estructura en estos sistemas, no son lo suficientemente precisas como para contrastarlas con las predicciones de esta teoría.

Hemos demostrado que en la aproximación de Ramakrishnan y Youssouf et al. [7] sólo se puede obtener un salto positivo en la densidad (o magnetización), en la transición. Dicha aproximación en el sistema tratado, considerando la ecuación de Clausius Clapeyron, da lugar a una inconsistencia termodinámica. Para salvar dicho inconveniente es necesario considerar una aproximación de orden superior, lo que implica el cálculo de funciones de correlación de tres o más cuerpos. Por otro lado, si la compresibilidad es alta, se puede tomar el límite de compresibilidad infinita, eliminando de esa manera el salto en la magnetización de las ecuaciones. Esto último es lo que hicimos en el presente trabajo, dada la alta compresibilidad en el intervalo de temperaturas y campos considerados. El salto en la magnetización se obtuvo mediante la ecuación de Clausius Clapeyron y es, en el intervalo de temperaturas considerado, consistente con los resultados experimentales.

Referencias

Este trabajo fue parcialmente financiado por CONICET-PIP N° 4946/96