AUTOMATIC RECALIBRATION OF QUANTUM DEVICES BY REINFORCING LEARNING

Autores/as

  • T. Crosta 1Computer Vision Center (CVC), 08193 Bellaterra (Cerdanyola del Vallès), Spain
  • L. Rebón 2Instituto de Física La Plata (IFLP), CONICET - UNLP, and Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), La Plata 1900, Argentina
  • F. Vilariño 1Computer Vision Center (CVC), 08193 Bellaterra (Cerdanyola del Vallès), Spain 3Department of Computer Science, Universitat Autónoma de Barcelona (UAB), 8193 Bellaterra (Cerdanyola del Vallès), Spain.
  • J.M. Matera 4IFLP-CONICET, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, La Plata 1900, Argentina
  • M. Bilkis 1Computer Vision Center (CVC), 08193 Bellaterra (Cerdanyola del Vallès), Spain

DOI:

https://doi.org/10.31527/analesafa.2025.36.4.95-105

Resumen

During their operation, due to shifts in environmental conditions, devices undergo various forms of detuning from their optimal settings.Typically, this is addressed through control loops, which monitor variables and the device performance, to maintain settings at their optimal values. Quantum devices are particularly challenging since their functionality relies on precisely tuning their parameters. At the same time, the detailed modeling of the environmental behavior is often computationally unaffordable, while a direct measure of the parameters defining the system state is costly and introduces extra noise in the mechanism. In this study, we investigate the application of reinforcement learning techniques to develop a model-free control loop for continuous recalibration of quantum device parameters. Furthermore, we explore the advantages of incorporating minimal environmental noise models. As an example, the application to numerical simulations of a Kennedy receiver-based long-distance quantum communication protocol is presented.

Descargas

Publicado

2025-12-29

Cómo citar

Crosta, T., Rebón, L., Vilariño, F., Matera, J., & Bilkis, M. (2025). AUTOMATIC RECALIBRATION OF QUANTUM DEVICES BY REINFORCING LEARNING. ANALES AFA, 36(4), 95–105. https://doi.org/10.31527/analesafa.2025.36.4.95-105

Número

Sección

Artículos invitados premiados "Luis Másperi"