AUTOMATIC RECALIBRATION OF QUANTUM DEVICES BY REINFORCING LEARNING

Authors

  • T. Crosta 1Computer Vision Center (CVC), 08193 Bellaterra (Cerdanyola del Vallès), Spain
  • L. Rebón 2Instituto de Física La Plata (IFLP), CONICET - UNLP, and Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), La Plata 1900, Argentina
  • F. Vilariño 1Computer Vision Center (CVC), 08193 Bellaterra (Cerdanyola del Vallès), Spain 3Department of Computer Science, Universitat Autónoma de Barcelona (UAB), 8193 Bellaterra (Cerdanyola del Vallès), Spain.
  • J.M. Matera 4IFLP-CONICET, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, La Plata 1900, Argentina
  • M. Bilkis 1Computer Vision Center (CVC), 08193 Bellaterra (Cerdanyola del Vallès), Spain

DOI:

https://doi.org/10.31527/analesafa.2025.36.4.95-105

Abstract

During their operation, due to shifts in environmental conditions, devices undergo various forms of detuning from their
optimal settings. Typically, this is addressed through control loops, which monitor variables and the device performance,
to maintain settings at their optimal values. Quantum devices are particularly challenging since their functionality relies
on precisely tuning their parameters. At the same time, the detailed modeling of the environmental behavior is often
computationally unaffordable, while a direct measure of the parameters defining the system state is costly and introduces
extra noise in the mechanism. In this study, we investigate the application of reinforcement learning techniques to
develop a model-free control loop for continuous recalibration of quantum device parameters. Furthermore, we explore
the advantages of incorporating minimal environmental noise models. As an example, the application to numerical
simulations of a Kennedy receiver-based long-distance quantum communication protocol is presented.

Published

2025-12-29

How to Cite

Crosta, T., Rebón, L., Vilariño, F., Matera, J., & Bilkis, M. (2025). AUTOMATIC RECALIBRATION OF QUANTUM DEVICES BY REINFORCING LEARNING. ANALES AFA, 36(4), 95–105. https://doi.org/10.31527/analesafa.2025.36.4.95-105

Issue

Section

Invited articles. AFA Prize "Luis Masperi"